webkit  2cdf99a9e3038c7e01b3c37e8ad903ecbe5eecf1
https://github.com/WebKit/webkit
mathops.h
Go to the documentation of this file.
1 /* Copyright (c) 2002-2008 Jean-Marc Valin
2  Copyright (c) 2007-2008 CSIRO
3  Copyright (c) 2007-2009 Xiph.Org Foundation
4  Written by Jean-Marc Valin */
9 /*
10  Redistribution and use in source and binary forms, with or without
11  modification, are permitted provided that the following conditions
12  are met:
13 
14  - Redistributions of source code must retain the above copyright
15  notice, this list of conditions and the following disclaimer.
16 
17  - Redistributions in binary form must reproduce the above copyright
18  notice, this list of conditions and the following disclaimer in the
19  documentation and/or other materials provided with the distribution.
20 
21  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
25  OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
26  EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
27  PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
28  PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
29  LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
30  NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
31  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33 
34 #ifndef MATHOPS_H
35 #define MATHOPS_H
36 
37 #include "arch.h"
38 #include "entcode.h"
39 #include "os_support.h"
40 
41 /* Multiplies two 16-bit fractional values. Bit-exactness of this macro is important */
42 #define FRAC_MUL16(a,b) ((16384+((opus_int32)(opus_int16)(a)*(opus_int16)(b)))>>15)
43 
44 unsigned isqrt32(opus_uint32 _val);
45 
46 #ifndef OVERRIDE_CELT_MAXABS16
47 static OPUS_INLINE opus_val32 celt_maxabs16(const opus_val16 *x, int len)
48 {
49  int i;
50  opus_val16 maxval = 0;
51  opus_val16 minval = 0;
52  for (i=0;i<len;i++)
53  {
54  maxval = MAX16(maxval, x[i]);
55  minval = MIN16(minval, x[i]);
56  }
57  return MAX32(EXTEND32(maxval),-EXTEND32(minval));
58 }
59 #endif
60 
61 #ifndef OVERRIDE_CELT_MAXABS32
62 #ifdef FIXED_POINT
63 static OPUS_INLINE opus_val32 celt_maxabs32(const opus_val32 *x, int len)
64 {
65  int i;
66  opus_val32 maxval = 0;
67  opus_val32 minval = 0;
68  for (i=0;i<len;i++)
69  {
70  maxval = MAX32(maxval, x[i]);
71  minval = MIN32(minval, x[i]);
72  }
73  return MAX32(maxval, -minval);
74 }
75 #else
76 #define celt_maxabs32(x,len) celt_maxabs16(x,len)
77 #endif
78 #endif
79 
80 
81 #ifndef FIXED_POINT
82 
83 #define PI 3.141592653f
84 #define celt_sqrt(x) ((float)sqrt(x))
85 #define celt_rsqrt(x) (1.f/celt_sqrt(x))
86 #define celt_rsqrt_norm(x) (celt_rsqrt(x))
87 #define celt_cos_norm(x) ((float)cos((.5f*PI)*(x)))
88 #define celt_rcp(x) (1.f/(x))
89 #define celt_div(a,b) ((a)/(b))
90 #define frac_div32(a,b) ((float)(a)/(b))
91 
92 #ifdef FLOAT_APPROX
93 
94 /* Note: This assumes radix-2 floating point with the exponent at bits 23..30 and an offset of 127
95  denorm, +/- inf and NaN are *not* handled */
96 
98 static OPUS_INLINE float celt_log2(float x)
99 {
100  int integer;
101  float frac;
102  union {
103  float f;
104  opus_uint32 i;
105  } in;
106  in.f = x;
107  integer = (in.i>>23)-127;
108  in.i -= integer<<23;
109  frac = in.f - 1.5f;
110  frac = -0.41445418f + frac*(0.95909232f
111  + frac*(-0.33951290f + frac*0.16541097f));
112  return 1+integer+frac;
113 }
114 
116 static OPUS_INLINE float celt_exp2(float x)
117 {
118  int integer;
119  float frac;
120  union {
121  float f;
122  opus_uint32 i;
123  } res;
124  integer = floor(x);
125  if (integer < -50)
126  return 0;
127  frac = x-integer;
128  /* K0 = 1, K1 = log(2), K2 = 3-4*log(2), K3 = 3*log(2) - 2 */
129  res.f = 0.99992522f + frac * (0.69583354f
130  + frac * (0.22606716f + 0.078024523f*frac));
131  res.i = (res.i + (integer<<23)) & 0x7fffffff;
132  return res.f;
133 }
134 
135 #else
136 #define celt_log2(x) ((float)(1.442695040888963387*log(x)))
137 #define celt_exp2(x) ((float)exp(0.6931471805599453094*(x)))
138 #endif
139 
140 #endif
141 
142 #ifdef FIXED_POINT
143 
144 #include "os_support.h"
145 
146 #ifndef OVERRIDE_CELT_ILOG2
147 
148 static OPUS_INLINE opus_int16 celt_ilog2(opus_int32 x)
149 {
150  celt_assert2(x>0, "celt_ilog2() only defined for strictly positive numbers");
151  return EC_ILOG(x)-1;
152 }
153 #endif
154 
155 
157 static OPUS_INLINE opus_int16 celt_zlog2(opus_val32 x)
158 {
159  return x <= 0 ? 0 : celt_ilog2(x);
160 }
161 
163 
165 
167 
169 static OPUS_INLINE opus_val16 celt_log2(opus_val32 x)
170 {
171  int i;
172  opus_val16 n, frac;
173  /* -0.41509302963303146, 0.9609890551383969, -0.31836011537636605,
174  0.15530808010959576, -0.08556153059057618 */
175  static const opus_val16 C[5] = {-6801+(1<<(13-DB_SHIFT)), 15746, -5217, 2545, -1401};
176  if (x==0)
177  return -32767;
178  i = celt_ilog2(x);
179  n = VSHR32(x,i-15)-32768-16384;
180  frac = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, C[4]))))))));
181  return SHL16(i-13,DB_SHIFT)+SHR16(frac,14-DB_SHIFT);
182 }
183 
184 /*
185  K0 = 1
186  K1 = log(2)
187  K2 = 3-4*log(2)
188  K3 = 3*log(2) - 2
189 */
190 #define D0 16383
191 #define D1 22804
192 #define D2 14819
193 #define D3 10204
194 
195 static OPUS_INLINE opus_val32 celt_exp2_frac(opus_val16 x)
196 {
197  opus_val16 frac;
198  frac = SHL16(x, 4);
199  return ADD16(D0, MULT16_16_Q15(frac, ADD16(D1, MULT16_16_Q15(frac, ADD16(D2 , MULT16_16_Q15(D3,frac))))));
200 }
202 static OPUS_INLINE opus_val32 celt_exp2(opus_val16 x)
203 {
204  int integer;
205  opus_val16 frac;
206  integer = SHR16(x,10);
207  if (integer>14)
208  return 0x7f000000;
209  else if (integer < -15)
210  return 0;
211  frac = celt_exp2_frac(x-SHL16(integer,10));
212  return VSHR32(EXTEND32(frac), -integer-2);
213 }
214 
216 
217 #define celt_div(a,b) MULT32_32_Q31((opus_val32)(a),celt_rcp(b))
218 
220 
221 #define M1 32767
222 #define M2 -21
223 #define M3 -11943
224 #define M4 4936
225 
226 /* Atan approximation using a 4th order polynomial. Input is in Q15 format
227  and normalized by pi/4. Output is in Q15 format */
228 static OPUS_INLINE opus_val16 celt_atan01(opus_val16 x)
229 {
230  return MULT16_16_P15(x, ADD32(M1, MULT16_16_P15(x, ADD32(M2, MULT16_16_P15(x, ADD32(M3, MULT16_16_P15(M4, x)))))));
231 }
232 
233 #undef M1
234 #undef M2
235 #undef M3
236 #undef M4
237 
238 /* atan2() approximation valid for positive input values */
239 static OPUS_INLINE opus_val16 celt_atan2p(opus_val16 y, opus_val16 x)
240 {
241  if (y < x)
242  {
243  opus_val32 arg;
244  arg = celt_div(SHL32(EXTEND32(y),15),x);
245  if (arg >= 32767)
246  arg = 32767;
247  return SHR16(celt_atan01(EXTRACT16(arg)),1);
248  } else {
249  opus_val32 arg;
250  arg = celt_div(SHL32(EXTEND32(x),15),y);
251  if (arg >= 32767)
252  arg = 32767;
253  return 25736-SHR16(celt_atan01(EXTRACT16(arg)),1);
254  }
255 }
256 
257 #endif /* FIXED_POINT */
258 #endif /* MATHOPS_H */
#define celt_div(a, b)
Definition: mathops.h:89
long integer
Definition: TestObj.idl:461
#define MULT16_16_P15(a, b)
Definition: arch.h:229
#define MIN32(a, b)
Definition: arch.h:74
short opus_int16
Definition: opus_types.h:144
#define celt_sqrt(x)
Definition: mathops.h:84
#define ADD16(a, b)
Definition: arch.h:208
#define celt_rsqrt_norm(x)
Definition: mathops.h:86
float opus_val16
Definition: arch.h:148
#define EXTRACT16(x)
Definition: arch.h:189
EGLStreamKHR EGLint n
Definition: eglext.h:984
#define SHL16(a, shift)
Definition: arch.h:192
#define EC_ILOG(_x)
Definition: ecintrin.h:85
OPENSSL_EXPORT const ASN1_OBJECT int const unsigned char int len
Definition: x509.h:1053
EGLSurface EGLint x
Definition: eglext.h:950
#define celt_exp2(x)
Definition: mathops.h:137
int opus_int32
Definition: opus_types.h:146
#define celt_maxabs32(x, len)
Definition: mathops.h:76
#define VSHR32(a, shift)
Definition: arch.h:196
EGLSurface EGLint EGLint y
Definition: eglext.h:950
#define celt_assert2(cond, message)
Definition: arch.h:67
#define celt_rcp(x)
Definition: mathops.h:88
GLboolean GLboolean GLboolean GLboolean a
Definition: gl2ext.h:306
#define frac_div32(a, b)
Definition: mathops.h:90
#define EXTEND32(x)
Definition: arch.h:190
#define MAX32(a, b)
Definition: arch.h:75
GLfloat f
Definition: gl2.h:417
#define MIN16(a, b)
Definition: arch.h:72
#define MAX16(a, b)
Definition: arch.h:73
#define ADD32(a, b)
Definition: arch.h:210
for i
Definition: complexityMeasures.m:24
unsigned int opus_uint32
Definition: opus_types.h:147
Definition: type_traits_unittest.cc:77
#define SHR16(a, shift)
Definition: arch.h:191
unsigned isqrt32(opus_uint32 _val)
Definition: mathops.c:42
#define SHL32(a, shift)
Definition: arch.h:194
#define celt_log2(x)
Definition: mathops.h:136
#define MULT16_16_Q15(a, b)
Definition: arch.h:228
Various architecture definitions for CELT.
GLboolean GLboolean GLboolean b
Definition: gl2ext.h:306
float opus_val32
Definition: arch.h:149
res
Definition: harness.py:111
#define celt_cos_norm(x)
Definition: mathops.h:87