webkit  2cdf99a9e3038c7e01b3c37e8ad903ecbe5eecf1
https://github.com/WebKit/webkit
coded_stream.h
Go to the documentation of this file.
1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc. All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 // * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 // * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // Author: kenton@google.com (Kenton Varda)
32 // Based on original Protocol Buffers design by
33 // Sanjay Ghemawat, Jeff Dean, and others.
34 //
35 // This file contains the CodedInputStream and CodedOutputStream classes,
36 // which wrap a ZeroCopyInputStream or ZeroCopyOutputStream, respectively,
37 // and allow you to read or write individual pieces of data in various
38 // formats. In particular, these implement the varint encoding for
39 // integers, a simple variable-length encoding in which smaller numbers
40 // take fewer bytes.
41 //
42 // Typically these classes will only be used internally by the protocol
43 // buffer library in order to encode and decode protocol buffers. Clients
44 // of the library only need to know about this class if they wish to write
45 // custom message parsing or serialization procedures.
46 //
47 // CodedOutputStream example:
48 // // Write some data to "myfile". First we write a 4-byte "magic number"
49 // // to identify the file type, then write a length-delimited string. The
50 // // string is composed of a varint giving the length followed by the raw
51 // // bytes.
52 // int fd = open("myfile", O_CREAT | O_WRONLY);
53 // ZeroCopyOutputStream* raw_output = new FileOutputStream(fd);
54 // CodedOutputStream* coded_output = new CodedOutputStream(raw_output);
55 //
56 // int magic_number = 1234;
57 // char text[] = "Hello world!";
58 // coded_output->WriteLittleEndian32(magic_number);
59 // coded_output->WriteVarint32(strlen(text));
60 // coded_output->WriteRaw(text, strlen(text));
61 //
62 // delete coded_output;
63 // delete raw_output;
64 // close(fd);
65 //
66 // CodedInputStream example:
67 // // Read a file created by the above code.
68 // int fd = open("myfile", O_RDONLY);
69 // ZeroCopyInputStream* raw_input = new FileInputStream(fd);
70 // CodedInputStream coded_input = new CodedInputStream(raw_input);
71 //
72 // coded_input->ReadLittleEndian32(&magic_number);
73 // if (magic_number != 1234) {
74 // cerr << "File not in expected format." << endl;
75 // return;
76 // }
77 //
78 // uint32 size;
79 // coded_input->ReadVarint32(&size);
80 //
81 // char* text = new char[size + 1];
82 // coded_input->ReadRaw(buffer, size);
83 // text[size] = '\0';
84 //
85 // delete coded_input;
86 // delete raw_input;
87 // close(fd);
88 //
89 // cout << "Text is: " << text << endl;
90 // delete [] text;
91 //
92 // For those who are interested, varint encoding is defined as follows:
93 //
94 // The encoding operates on unsigned integers of up to 64 bits in length.
95 // Each byte of the encoded value has the format:
96 // * bits 0-6: Seven bits of the number being encoded.
97 // * bit 7: Zero if this is the last byte in the encoding (in which
98 // case all remaining bits of the number are zero) or 1 if
99 // more bytes follow.
100 // The first byte contains the least-significant 7 bits of the number, the
101 // second byte (if present) contains the next-least-significant 7 bits,
102 // and so on. So, the binary number 1011000101011 would be encoded in two
103 // bytes as "10101011 00101100".
104 //
105 // In theory, varint could be used to encode integers of any length.
106 // However, for practicality we set a limit at 64 bits. The maximum encoded
107 // length of a number is thus 10 bytes.
108 
109 #ifndef GOOGLE_PROTOBUF_IO_CODED_STREAM_H__
110 #define GOOGLE_PROTOBUF_IO_CODED_STREAM_H__
111 
112 #include <assert.h>
113 #include <string>
114 #include <utility>
115 #ifdef _MSC_VER
116  // Assuming windows is always little-endian.
117  #if !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST)
118  #define PROTOBUF_LITTLE_ENDIAN 1
119  #endif
120  #if _MSC_VER >= 1300 && !defined(__INTEL_COMPILER)
121  // If MSVC has "/RTCc" set, it will complain about truncating casts at
122  // runtime. This file contains some intentional truncating casts.
123  #pragma runtime_checks("c", off)
124  #endif
125 #else
126  #include <sys/param.h> // __BYTE_ORDER
127  #if ((defined(__LITTLE_ENDIAN__) && !defined(__BIG_ENDIAN__)) || \
128  (defined(__BYTE_ORDER) && __BYTE_ORDER == __LITTLE_ENDIAN)) && \
129  !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST)
130  #define PROTOBUF_LITTLE_ENDIAN 1
131  #endif
132 #endif
134 
135 namespace google {
136 
137 namespace protobuf {
138 
139 class DescriptorPool;
140 class MessageFactory;
141 
142 namespace io {
143 
144 // Defined in this file.
145 class CodedInputStream;
146 class CodedOutputStream;
147 
148 // Defined in other files.
149 class ZeroCopyInputStream; // zero_copy_stream.h
150 class ZeroCopyOutputStream; // zero_copy_stream.h
151 
152 // Class which reads and decodes binary data which is composed of varint-
153 // encoded integers and fixed-width pieces. Wraps a ZeroCopyInputStream.
154 // Most users will not need to deal with CodedInputStream.
155 //
156 // Most methods of CodedInputStream that return a bool return false if an
157 // underlying I/O error occurs or if the data is malformed. Once such a
158 // failure occurs, the CodedInputStream is broken and is no longer useful.
160  public:
161  // Create a CodedInputStream that reads from the given ZeroCopyInputStream.
163 
164  // Create a CodedInputStream that reads from the given flat array. This is
165  // faster than using an ArrayInputStream. PushLimit(size) is implied by
166  // this constructor.
167  explicit CodedInputStream(const uint8* buffer, int size);
168 
169  // Destroy the CodedInputStream and position the underlying
170  // ZeroCopyInputStream at the first unread byte. If an error occurred while
171  // reading (causing a method to return false), then the exact position of
172  // the input stream may be anywhere between the last value that was read
173  // successfully and the stream's byte limit.
174  ~CodedInputStream();
175 
176  // Return true if this CodedInputStream reads from a flat array instead of
177  // a ZeroCopyInputStream.
178  inline bool IsFlat() const;
179 
180  // Skips a number of bytes. Returns false if an underlying read error
181  // occurs.
182  bool Skip(int count);
183 
184  // Sets *data to point directly at the unread part of the CodedInputStream's
185  // underlying buffer, and *size to the size of that buffer, but does not
186  // advance the stream's current position. This will always either produce
187  // a non-empty buffer or return false. If the caller consumes any of
188  // this data, it should then call Skip() to skip over the consumed bytes.
189  // This may be useful for implementing external fast parsing routines for
190  // types of data not covered by the CodedInputStream interface.
191  bool GetDirectBufferPointer(const void** data, int* size);
192 
193  // Like GetDirectBufferPointer, but this method is inlined, and does not
194  // attempt to Refresh() if the buffer is currently empty.
195  GOOGLE_ATTRIBUTE_ALWAYS_INLINE void GetDirectBufferPointerInline(const void** data,
196  int* size);
197 
198  // Read raw bytes, copying them into the given buffer.
199  bool ReadRaw(void* buffer, int size);
200 
201  // Like the above, with inlined optimizations. This should only be used
202  // by the protobuf implementation.
203  GOOGLE_ATTRIBUTE_ALWAYS_INLINE bool InternalReadRawInline(void* buffer, int size);
204 
205  // Like ReadRaw, but reads into a string.
206  //
207  // Implementation Note: ReadString() grows the string gradually as it
208  // reads in the data, rather than allocating the entire requested size
209  // upfront. This prevents denial-of-service attacks in which a client
210  // could claim that a string is going to be MAX_INT bytes long in order to
211  // crash the server because it can't allocate this much space at once.
212  bool ReadString(string* buffer, int size);
213  // Like the above, with inlined optimizations. This should only be used
214  // by the protobuf implementation.
215  GOOGLE_ATTRIBUTE_ALWAYS_INLINE bool InternalReadStringInline(string* buffer,
216  int size);
217 
218 
219  // Read a 32-bit little-endian integer.
220  bool ReadLittleEndian32(uint32* value);
221  // Read a 64-bit little-endian integer.
222  bool ReadLittleEndian64(uint64* value);
223 
224  // These methods read from an externally provided buffer. The caller is
225  // responsible for ensuring that the buffer has sufficient space.
226  // Read a 32-bit little-endian integer.
227  static const uint8* ReadLittleEndian32FromArray(const uint8* buffer,
228  uint32* value);
229  // Read a 64-bit little-endian integer.
230  static const uint8* ReadLittleEndian64FromArray(const uint8* buffer,
231  uint64* value);
232 
233  // Read an unsigned integer with Varint encoding, truncating to 32 bits.
234  // Reading a 32-bit value is equivalent to reading a 64-bit one and casting
235  // it to uint32, but may be more efficient.
236  bool ReadVarint32(uint32* value);
237  // Read an unsigned integer with Varint encoding.
238  bool ReadVarint64(uint64* value);
239 
240  // Read a tag. This calls ReadVarint32() and returns the result, or returns
241  // zero (which is not a valid tag) if ReadVarint32() fails. Also, it updates
242  // the last tag value, which can be checked with LastTagWas().
243  // Always inline because this is only called in one place per parse loop
244  // but it is called for every iteration of said loop, so it should be fast.
245  // GCC doesn't want to inline this by default.
247 
248  // This usually a faster alternative to ReadTag() when cutoff is a manifest
249  // constant. It does particularly well for cutoff >= 127. The first part
250  // of the return value is the tag that was read, though it can also be 0 in
251  // the cases where ReadTag() would return 0. If the second part is true
252  // then the tag is known to be in [0, cutoff]. If not, the tag either is
253  // above cutoff or is 0. (There's intentional wiggle room when tag is 0,
254  // because that can arise in several ways, and for best performance we want
255  // to avoid an extra "is tag == 0?" check here.)
256  GOOGLE_ATTRIBUTE_ALWAYS_INLINE std::pair<uint32, bool> ReadTagWithCutoff(
257  uint32 cutoff);
258 
259  // Usually returns true if calling ReadVarint32() now would produce the given
260  // value. Will always return false if ReadVarint32() would not return the
261  // given value. If ExpectTag() returns true, it also advances past
262  // the varint. For best performance, use a compile-time constant as the
263  // parameter.
264  // Always inline because this collapses to a small number of instructions
265  // when given a constant parameter, but GCC doesn't want to inline by default.
267 
268  // Like above, except this reads from the specified buffer. The caller is
269  // responsible for ensuring that the buffer is large enough to read a varint
270  // of the expected size. For best performance, use a compile-time constant as
271  // the expected tag parameter.
272  //
273  // Returns a pointer beyond the expected tag if it was found, or NULL if it
274  // was not.
275  GOOGLE_ATTRIBUTE_ALWAYS_INLINE static const uint8* ExpectTagFromArray(
276  const uint8* buffer,
277  uint32 expected);
278 
279  // Usually returns true if no more bytes can be read. Always returns false
280  // if more bytes can be read. If ExpectAtEnd() returns true, a subsequent
281  // call to LastTagWas() will act as if ReadTag() had been called and returned
282  // zero, and ConsumedEntireMessage() will return true.
283  bool ExpectAtEnd();
284 
285  // If the last call to ReadTag() or ReadTagWithCutoff() returned the
286  // given value, returns true. Otherwise, returns false;
287  //
288  // This is needed because parsers for some types of embedded messages
289  // (with field type TYPE_GROUP) don't actually know that they've reached the
290  // end of a message until they see an ENDGROUP tag, which was actually part
291  // of the enclosing message. The enclosing message would like to check that
292  // tag to make sure it had the right number, so it calls LastTagWas() on
293  // return from the embedded parser to check.
294  bool LastTagWas(uint32 expected);
295 
296  // When parsing message (but NOT a group), this method must be called
297  // immediately after MergeFromCodedStream() returns (if it returns true)
298  // to further verify that the message ended in a legitimate way. For
299  // example, this verifies that parsing did not end on an end-group tag.
300  // It also checks for some cases where, due to optimizations,
301  // MergeFromCodedStream() can incorrectly return true.
302  bool ConsumedEntireMessage();
303 
304  // Limits ----------------------------------------------------------
305  // Limits are used when parsing length-delimited embedded messages.
306  // After the message's length is read, PushLimit() is used to prevent
307  // the CodedInputStream from reading beyond that length. Once the
308  // embedded message has been parsed, PopLimit() is called to undo the
309  // limit.
310 
311  // Opaque type used with PushLimit() and PopLimit(). Do not modify
312  // values of this type yourself. The only reason that this isn't a
313  // struct with private internals is for efficiency.
314  typedef int Limit;
315 
316  // Places a limit on the number of bytes that the stream may read,
317  // starting from the current position. Once the stream hits this limit,
318  // it will act like the end of the input has been reached until PopLimit()
319  // is called.
320  //
321  // As the names imply, the stream conceptually has a stack of limits. The
322  // shortest limit on the stack is always enforced, even if it is not the
323  // top limit.
324  //
325  // The value returned by PushLimit() is opaque to the caller, and must
326  // be passed unchanged to the corresponding call to PopLimit().
327  Limit PushLimit(int byte_limit);
328 
329  // Pops the last limit pushed by PushLimit(). The input must be the value
330  // returned by that call to PushLimit().
331  void PopLimit(Limit limit);
332 
333  // Returns the number of bytes left until the nearest limit on the
334  // stack is hit, or -1 if no limits are in place.
335  int BytesUntilLimit() const;
336 
337  // Returns current position relative to the beginning of the input stream.
338  int CurrentPosition() const;
339 
340  // Total Bytes Limit -----------------------------------------------
341  // To prevent malicious users from sending excessively large messages
342  // and causing integer overflows or memory exhaustion, CodedInputStream
343  // imposes a hard limit on the total number of bytes it will read.
344 
345  // Sets the maximum number of bytes that this CodedInputStream will read
346  // before refusing to continue. To prevent integer overflows in the
347  // protocol buffers implementation, as well as to prevent servers from
348  // allocating enormous amounts of memory to hold parsed messages, the
349  // maximum message length should be limited to the shortest length that
350  // will not harm usability. The theoretical shortest message that could
351  // cause integer overflows is 512MB. The default limit is 64MB. Apps
352  // should set shorter limits if possible. If warning_threshold is not -1,
353  // a warning will be printed to stderr after warning_threshold bytes are
354  // read. For backwards compatibility all negative values get squashed to -1,
355  // as other negative values might have special internal meanings.
356  // An error will always be printed to stderr if the limit is reached.
357  //
358  // This is unrelated to PushLimit()/PopLimit().
359  //
360  // Hint: If you are reading this because your program is printing a
361  // warning about dangerously large protocol messages, you may be
362  // confused about what to do next. The best option is to change your
363  // design such that excessively large messages are not necessary.
364  // For example, try to design file formats to consist of many small
365  // messages rather than a single large one. If this is infeasible,
366  // you will need to increase the limit. Chances are, though, that
367  // your code never constructs a CodedInputStream on which the limit
368  // can be set. You probably parse messages by calling things like
369  // Message::ParseFromString(). In this case, you will need to change
370  // your code to instead construct some sort of ZeroCopyInputStream
371  // (e.g. an ArrayInputStream), construct a CodedInputStream around
372  // that, then call Message::ParseFromCodedStream() instead. Then
373  // you can adjust the limit. Yes, it's more work, but you're doing
374  // something unusual.
375  void SetTotalBytesLimit(int total_bytes_limit, int warning_threshold);
376 
377  // The Total Bytes Limit minus the Current Position, or -1 if there
378  // is no Total Bytes Limit.
379  int BytesUntilTotalBytesLimit() const;
380 
381  // Recursion Limit -------------------------------------------------
382  // To prevent corrupt or malicious messages from causing stack overflows,
383  // we must keep track of the depth of recursion when parsing embedded
384  // messages and groups. CodedInputStream keeps track of this because it
385  // is the only object that is passed down the stack during parsing.
386 
387  // Sets the maximum recursion depth. The default is 100.
388  void SetRecursionLimit(int limit);
389 
390 
391  // Increments the current recursion depth. Returns true if the depth is
392  // under the limit, false if it has gone over.
393  bool IncrementRecursionDepth();
394 
395  // Decrements the recursion depth if possible.
396  void DecrementRecursionDepth();
397 
398  // Decrements the recursion depth blindly. This is faster than
399  // DecrementRecursionDepth(). It should be used only if all previous
400  // increments to recursion depth were successful.
401  void UnsafeDecrementRecursionDepth();
402 
403  // Shorthand for make_pair(PushLimit(byte_limit), --recursion_budget_).
404  // Using this can reduce code size and complexity in some cases. The caller
405  // is expected to check that the second part of the result is non-negative (to
406  // bail out if the depth of recursion is too high) and, if all is well, to
407  // later pass the first part of the result to PopLimit() or similar.
408  std::pair<CodedInputStream::Limit, int> IncrementRecursionDepthAndPushLimit(
409  int byte_limit);
410 
411  // Shorthand for PushLimit(ReadVarint32(&length) ? length : 0).
412  Limit ReadLengthAndPushLimit();
413 
414  // Helper that is equivalent to: {
415  // bool result = ConsumedEntireMessage();
416  // PopLimit(limit);
417  // UnsafeDecrementRecursionDepth();
418  // return result; }
419  // Using this can reduce code size and complexity in some cases.
420  // Do not use unless the current recursion depth is greater than zero.
421  bool DecrementRecursionDepthAndPopLimit(Limit limit);
422 
423  // Helper that is equivalent to: {
424  // bool result = ConsumedEntireMessage();
425  // PopLimit(limit);
426  // return result; }
427  // Using this can reduce code size and complexity in some cases.
428  bool CheckEntireMessageConsumedAndPopLimit(Limit limit);
429 
430  // Extension Registry ----------------------------------------------
431  // ADVANCED USAGE: 99.9% of people can ignore this section.
432  //
433  // By default, when parsing extensions, the parser looks for extension
434  // definitions in the pool which owns the outer message's Descriptor.
435  // However, you may call SetExtensionRegistry() to provide an alternative
436  // pool instead. This makes it possible, for example, to parse a message
437  // using a generated class, but represent some extensions using
438  // DynamicMessage.
439 
440  // Set the pool used to look up extensions. Most users do not need to call
441  // this as the correct pool will be chosen automatically.
442  //
443  // WARNING: It is very easy to misuse this. Carefully read the requirements
444  // below. Do not use this unless you are sure you need it. Almost no one
445  // does.
446  //
447  // Let's say you are parsing a message into message object m, and you want
448  // to take advantage of SetExtensionRegistry(). You must follow these
449  // requirements:
450  //
451  // The given DescriptorPool must contain m->GetDescriptor(). It is not
452  // sufficient for it to simply contain a descriptor that has the same name
453  // and content -- it must be the *exact object*. In other words:
454  // assert(pool->FindMessageTypeByName(m->GetDescriptor()->full_name()) ==
455  // m->GetDescriptor());
456  // There are two ways to satisfy this requirement:
457  // 1) Use m->GetDescriptor()->pool() as the pool. This is generally useless
458  // because this is the pool that would be used anyway if you didn't call
459  // SetExtensionRegistry() at all.
460  // 2) Use a DescriptorPool which has m->GetDescriptor()->pool() as an
461  // "underlay". Read the documentation for DescriptorPool for more
462  // information about underlays.
463  //
464  // You must also provide a MessageFactory. This factory will be used to
465  // construct Message objects representing extensions. The factory's
466  // GetPrototype() MUST return non-NULL for any Descriptor which can be found
467  // through the provided pool.
468  //
469  // If the provided factory might return instances of protocol-compiler-
470  // generated (i.e. compiled-in) types, or if the outer message object m is
471  // a generated type, then the given factory MUST have this property: If
472  // GetPrototype() is given a Descriptor which resides in
473  // DescriptorPool::generated_pool(), the factory MUST return the same
474  // prototype which MessageFactory::generated_factory() would return. That
475  // is, given a descriptor for a generated type, the factory must return an
476  // instance of the generated class (NOT DynamicMessage). However, when
477  // given a descriptor for a type that is NOT in generated_pool, the factory
478  // is free to return any implementation.
479  //
480  // The reason for this requirement is that generated sub-objects may be
481  // accessed via the standard (non-reflection) extension accessor methods,
482  // and these methods will down-cast the object to the generated class type.
483  // If the object is not actually of that type, the results would be undefined.
484  // On the other hand, if an extension is not compiled in, then there is no
485  // way the code could end up accessing it via the standard accessors -- the
486  // only way to access the extension is via reflection. When using reflection,
487  // DynamicMessage and generated messages are indistinguishable, so it's fine
488  // if these objects are represented using DynamicMessage.
489  //
490  // Using DynamicMessageFactory on which you have called
491  // SetDelegateToGeneratedFactory(true) should be sufficient to satisfy the
492  // above requirement.
493  //
494  // If either pool or factory is NULL, both must be NULL.
495  //
496  // Note that this feature is ignored when parsing "lite" messages as they do
497  // not have descriptors.
498  void SetExtensionRegistry(const DescriptorPool* pool,
500 
501  // Get the DescriptorPool set via SetExtensionRegistry(), or NULL if no pool
502  // has been provided.
503  const DescriptorPool* GetExtensionPool();
504 
505  // Get the MessageFactory set via SetExtensionRegistry(), or NULL if no
506  // factory has been provided.
507  MessageFactory* GetExtensionFactory();
508 
509  private:
511 
512  const uint8* buffer_;
513  const uint8* buffer_end_; // pointer to the end of the buffer.
515  int total_bytes_read_; // total bytes read from input_, including
516  // the current buffer
517 
518  // If total_bytes_read_ surpasses INT_MAX, we record the extra bytes here
519  // so that we can BackUp() on destruction.
520  int overflow_bytes_;
521 
522  // LastTagWas() stuff.
523  uint32 last_tag_; // result of last ReadTag() or ReadTagWithCutoff().
524 
525  // This is set true by ReadTag{Fallback/Slow}() if it is called when exactly
526  // at EOF, or by ExpectAtEnd() when it returns true. This happens when we
527  // reach the end of a message and attempt to read another tag.
528  bool legitimate_message_end_;
529 
530  // See EnableAliasing().
531  bool aliasing_enabled_;
532 
533  // Limits
534  Limit current_limit_; // if position = -1, no limit is applied
535 
536  // For simplicity, if the current buffer crosses a limit (either a normal
537  // limit created by PushLimit() or the total bytes limit), buffer_size_
538  // only tracks the number of bytes before that limit. This field
539  // contains the number of bytes after it. Note that this implies that if
540  // buffer_size_ == 0 and buffer_size_after_limit_ > 0, we know we've
541  // hit a limit. However, if both are zero, it doesn't necessarily mean
542  // we aren't at a limit -- the buffer may have ended exactly at the limit.
543  int buffer_size_after_limit_;
544 
545  // Maximum number of bytes to read, period. This is unrelated to
546  // current_limit_. Set using SetTotalBytesLimit().
547  int total_bytes_limit_;
548 
549  // If positive/0: Limit for bytes read after which a warning due to size
550  // should be logged.
551  // If -1: Printing of warning disabled. Can be set by client.
552  // If -2: Internal: Limit has been reached, print full size when destructing.
553  int total_bytes_warning_threshold_;
554 
555  // Current recursion budget, controlled by IncrementRecursionDepth() and
556  // similar. Starts at recursion_limit_ and goes down: if this reaches
557  // -1 we are over budget.
558  int recursion_budget_;
559  // Recursion depth limit, set by SetRecursionLimit().
560  int recursion_limit_;
561 
562  // See SetExtensionRegistry().
563  const DescriptorPool* extension_pool_;
564  MessageFactory* extension_factory_;
565 
566  // Private member functions.
567 
568  // Advance the buffer by a given number of bytes.
569  void Advance(int amount);
570 
571  // Back up input_ to the current buffer position.
572  void BackUpInputToCurrentPosition();
573 
574  // Recomputes the value of buffer_size_after_limit_. Must be called after
575  // current_limit_ or total_bytes_limit_ changes.
576  void RecomputeBufferLimits();
577 
578  // Writes an error message saying that we hit total_bytes_limit_.
579  void PrintTotalBytesLimitError();
580 
581  // Called when the buffer runs out to request more data. Implies an
582  // Advance(BufferSize()).
583  bool Refresh();
584 
585  // When parsing varints, we optimize for the common case of small values, and
586  // then optimize for the case when the varint fits within the current buffer
587  // piece. The Fallback method is used when we can't use the one-byte
588  // optimization. The Slow method is yet another fallback when the buffer is
589  // not large enough. Making the slow path out-of-line speeds up the common
590  // case by 10-15%. The slow path is fairly uncommon: it only triggers when a
591  // message crosses multiple buffers. Note: ReadVarint32Fallback() and
592  // ReadVarint64Fallback() are called frequently and generally not inlined, so
593  // they have been optimized to avoid "out" parameters. The former returns -1
594  // if it fails and the uint32 it read otherwise. The latter has a bool
595  // indicating success or failure as part of its return type.
596  int64 ReadVarint32Fallback(uint32 first_byte_or_zero);
597  std::pair<uint64, bool> ReadVarint64Fallback();
598  bool ReadVarint32Slow(uint32* value);
599  bool ReadVarint64Slow(uint64* value);
600  bool ReadLittleEndian32Fallback(uint32* value);
601  bool ReadLittleEndian64Fallback(uint64* value);
602  // Fallback/slow methods for reading tags. These do not update last_tag_,
603  // but will set legitimate_message_end_ if we are at the end of the input
604  // stream.
605  uint32 ReadTagFallback(uint32 first_byte_or_zero);
606  uint32 ReadTagSlow();
607  bool ReadStringFallback(string* buffer, int size);
608 
609  // Return the size of the buffer.
610  int BufferSize() const;
611 
612  static const int kDefaultTotalBytesLimit = 64 << 20; // 64MB
613 
614  static const int kDefaultTotalBytesWarningThreshold = 32 << 20; // 32MB
615 
616  static int default_recursion_limit_; // 100 by default.
617 };
618 
619 // Class which encodes and writes binary data which is composed of varint-
620 // encoded integers and fixed-width pieces. Wraps a ZeroCopyOutputStream.
621 // Most users will not need to deal with CodedOutputStream.
622 //
623 // Most methods of CodedOutputStream which return a bool return false if an
624 // underlying I/O error occurs. Once such a failure occurs, the
625 // CodedOutputStream is broken and is no longer useful. The Write* methods do
626 // not return the stream status, but will invalidate the stream if an error
627 // occurs. The client can probe HadError() to determine the status.
628 //
629 // Note that every method of CodedOutputStream which writes some data has
630 // a corresponding static "ToArray" version. These versions write directly
631 // to the provided buffer, returning a pointer past the last written byte.
632 // They require that the buffer has sufficient capacity for the encoded data.
633 // This allows an optimization where we check if an output stream has enough
634 // space for an entire message before we start writing and, if there is, we
635 // call only the ToArray methods to avoid doing bound checks for each
636 // individual value.
637 // i.e., in the example above:
638 //
639 // CodedOutputStream coded_output = new CodedOutputStream(raw_output);
640 // int magic_number = 1234;
641 // char text[] = "Hello world!";
642 //
643 // int coded_size = sizeof(magic_number) +
644 // CodedOutputStream::VarintSize32(strlen(text)) +
645 // strlen(text);
646 //
647 // uint8* buffer =
648 // coded_output->GetDirectBufferForNBytesAndAdvance(coded_size);
649 // if (buffer != NULL) {
650 // // The output stream has enough space in the buffer: write directly to
651 // // the array.
652 // buffer = CodedOutputStream::WriteLittleEndian32ToArray(magic_number,
653 // buffer);
654 // buffer = CodedOutputStream::WriteVarint32ToArray(strlen(text), buffer);
655 // buffer = CodedOutputStream::WriteRawToArray(text, strlen(text), buffer);
656 // } else {
657 // // Make bound-checked writes, which will ask the underlying stream for
658 // // more space as needed.
659 // coded_output->WriteLittleEndian32(magic_number);
660 // coded_output->WriteVarint32(strlen(text));
661 // coded_output->WriteRaw(text, strlen(text));
662 // }
663 //
664 // delete coded_output;
666  public:
667  // Create an CodedOutputStream that writes to the given ZeroCopyOutputStream.
669  CodedOutputStream(ZeroCopyOutputStream* output, bool do_eager_refresh);
670 
671  // Destroy the CodedOutputStream and position the underlying
672  // ZeroCopyOutputStream immediately after the last byte written.
674 
675  // Trims any unused space in the underlying buffer so that its size matches
676  // the number of bytes written by this stream. The underlying buffer will
677  // automatically be trimmed when this stream is destroyed; this call is only
678  // necessary if the underlying buffer is accessed *before* the stream is
679  // destroyed.
680  void Trim();
681 
682  // Skips a number of bytes, leaving the bytes unmodified in the underlying
683  // buffer. Returns false if an underlying write error occurs. This is
684  // mainly useful with GetDirectBufferPointer().
685  bool Skip(int count);
686 
687  // Sets *data to point directly at the unwritten part of the
688  // CodedOutputStream's underlying buffer, and *size to the size of that
689  // buffer, but does not advance the stream's current position. This will
690  // always either produce a non-empty buffer or return false. If the caller
691  // writes any data to this buffer, it should then call Skip() to skip over
692  // the consumed bytes. This may be useful for implementing external fast
693  // serialization routines for types of data not covered by the
694  // CodedOutputStream interface.
695  bool GetDirectBufferPointer(void** data, int* size);
696 
697  // If there are at least "size" bytes available in the current buffer,
698  // returns a pointer directly into the buffer and advances over these bytes.
699  // The caller may then write directly into this buffer (e.g. using the
700  // *ToArray static methods) rather than go through CodedOutputStream. If
701  // there are not enough bytes available, returns NULL. The return pointer is
702  // invalidated as soon as any other non-const method of CodedOutputStream
703  // is called.
704  inline uint8* GetDirectBufferForNBytesAndAdvance(int size);
705 
706  // Write raw bytes, copying them from the given buffer.
707  void WriteRaw(const void* buffer, int size);
708  // Like WriteRaw() but will try to write aliased data if aliasing is
709  // turned on.
710  void WriteRawMaybeAliased(const void* data, int size);
711  // Like WriteRaw() but writing directly to the target array.
712  // This is _not_ inlined, as the compiler often optimizes memcpy into inline
713  // copy loops. Since this gets called by every field with string or bytes
714  // type, inlining may lead to a significant amount of code bloat, with only a
715  // minor performance gain.
716  static uint8* WriteRawToArray(const void* buffer, int size, uint8* target);
717 
718  // Equivalent to WriteRaw(str.data(), str.size()).
719  void WriteString(const string& str);
720  // Like WriteString() but writing directly to the target array.
721  static uint8* WriteStringToArray(const string& str, uint8* target);
722  // Write the varint-encoded size of str followed by str.
723  static uint8* WriteStringWithSizeToArray(const string& str, uint8* target);
724 
725 
726  // Instructs the CodedOutputStream to allow the underlying
727  // ZeroCopyOutputStream to hold pointers to the original structure instead of
728  // copying, if it supports it (i.e. output->AllowsAliasing() is true). If the
729  // underlying stream does not support aliasing, then enabling it has no
730  // affect. For now, this only affects the behavior of
731  // WriteRawMaybeAliased().
732  //
733  // NOTE: It is caller's responsibility to ensure that the chunk of memory
734  // remains live until all of the data has been consumed from the stream.
735  void EnableAliasing(bool enabled);
736 
737  // Write a 32-bit little-endian integer.
738  void WriteLittleEndian32(uint32 value);
739  // Like WriteLittleEndian32() but writing directly to the target array.
740  static uint8* WriteLittleEndian32ToArray(uint32 value, uint8* target);
741  // Write a 64-bit little-endian integer.
742  void WriteLittleEndian64(uint64 value);
743  // Like WriteLittleEndian64() but writing directly to the target array.
744  static uint8* WriteLittleEndian64ToArray(uint64 value, uint8* target);
745 
746  // Write an unsigned integer with Varint encoding. Writing a 32-bit value
747  // is equivalent to casting it to uint64 and writing it as a 64-bit value,
748  // but may be more efficient.
749  void WriteVarint32(uint32 value);
750  // Like WriteVarint32() but writing directly to the target array.
751  static uint8* WriteVarint32ToArray(uint32 value, uint8* target);
752  // Write an unsigned integer with Varint encoding.
753  void WriteVarint64(uint64 value);
754  // Like WriteVarint64() but writing directly to the target array.
755  static uint8* WriteVarint64ToArray(uint64 value, uint8* target);
756 
757  // Equivalent to WriteVarint32() except when the value is negative,
758  // in which case it must be sign-extended to a full 10 bytes.
759  void WriteVarint32SignExtended(int32 value);
760  // Like WriteVarint32SignExtended() but writing directly to the target array.
761  static uint8* WriteVarint32SignExtendedToArray(int32 value, uint8* target);
762 
763  // This is identical to WriteVarint32(), but optimized for writing tags.
764  // In particular, if the input is a compile-time constant, this method
765  // compiles down to a couple instructions.
766  // Always inline because otherwise the aformentioned optimization can't work,
767  // but GCC by default doesn't want to inline this.
768  void WriteTag(uint32 value);
769  // Like WriteTag() but writing directly to the target array.
770  GOOGLE_ATTRIBUTE_ALWAYS_INLINE static uint8* WriteTagToArray(uint32 value,
771  uint8* target);
772 
773  // Returns the number of bytes needed to encode the given value as a varint.
774  static int VarintSize32(uint32 value);
775  // Returns the number of bytes needed to encode the given value as a varint.
776  static int VarintSize64(uint64 value);
777 
778  // If negative, 10 bytes. Otheriwse, same as VarintSize32().
779  static int VarintSize32SignExtended(int32 value);
780 
781  // Compile-time equivalent of VarintSize32().
782  template <uint32 Value>
784  static const int value =
785  (Value < (1 << 7))
786  ? 1
787  : (Value < (1 << 14))
788  ? 2
789  : (Value < (1 << 21))
790  ? 3
791  : (Value < (1 << 28))
792  ? 4
793  : 5;
794  };
795 
796  // Returns the total number of bytes written since this object was created.
797  inline int ByteCount() const;
798 
799  // Returns true if there was an underlying I/O error since this object was
800  // created.
801  bool HadError() const { return had_error_; }
802 
803  private:
805 
806  ZeroCopyOutputStream* output_;
807  uint8* buffer_;
808  int buffer_size_;
809  int total_bytes_; // Sum of sizes of all buffers seen so far.
810  bool had_error_; // Whether an error occurred during output.
811  bool aliasing_enabled_; // See EnableAliasing().
812 
813  // Advance the buffer by a given number of bytes.
814  void Advance(int amount);
815 
816  // Called when the buffer runs out to request more data. Implies an
817  // Advance(buffer_size_).
818  bool Refresh();
819 
820  // Like WriteRaw() but may avoid copying if the underlying
821  // ZeroCopyOutputStream supports it.
822  void WriteAliasedRaw(const void* buffer, int size);
823 
824  // If this write might cross the end of the buffer, we compose the bytes first
825  // then use WriteRaw().
826  void WriteVarint32SlowPath(uint32 value);
827 
828  // Always-inlined versions of WriteVarint* functions so that code can be
829  // reused, while still controlling size. For instance, WriteVarint32ToArray()
830  // should not directly call this: since it is inlined itself, doing so
831  // would greatly increase the size of generated code. Instead, it should call
832  // WriteVarint32FallbackToArray. Meanwhile, WriteVarint32() is already
833  // out-of-line, so it should just invoke this directly to avoid any extra
834  // function call overhead.
835  GOOGLE_ATTRIBUTE_ALWAYS_INLINE static uint8* WriteVarint64ToArrayInline(
836  uint64 value, uint8* target);
837 
838  static int VarintSize32Fallback(uint32 value);
839 };
840 
841 // inline methods ====================================================
842 // The vast majority of varints are only one byte. These inline
843 // methods optimize for that case.
844 
846  uint32 v = 0;
847  if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_)) {
848  v = *buffer_;
849  if (v < 0x80) {
850  *value = v;
851  Advance(1);
852  return true;
853  }
854  }
855  int64 result = ReadVarint32Fallback(v);
856  *value = static_cast<uint32>(result);
857  return result >= 0;
858 }
859 
861  if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && *buffer_ < 0x80) {
862  *value = *buffer_;
863  Advance(1);
864  return true;
865  }
866  std::pair<uint64, bool> p = ReadVarint64Fallback();
867  *value = p.first;
868  return p.second;
869 }
870 
871 // static
873  const uint8* buffer,
874  uint32* value) {
875 #if defined(PROTOBUF_LITTLE_ENDIAN)
876  memcpy(value, buffer, sizeof(*value));
877  return buffer + sizeof(*value);
878 #else
879  *value = (static_cast<uint32>(buffer[0]) ) |
880  (static_cast<uint32>(buffer[1]) << 8) |
881  (static_cast<uint32>(buffer[2]) << 16) |
882  (static_cast<uint32>(buffer[3]) << 24);
883  return buffer + sizeof(*value);
884 #endif
885 }
886 // static
888  const uint8* buffer,
889  uint64* value) {
890 #if defined(PROTOBUF_LITTLE_ENDIAN)
891  memcpy(value, buffer, sizeof(*value));
892  return buffer + sizeof(*value);
893 #else
894  uint32 part0 = (static_cast<uint32>(buffer[0]) ) |
895  (static_cast<uint32>(buffer[1]) << 8) |
896  (static_cast<uint32>(buffer[2]) << 16) |
897  (static_cast<uint32>(buffer[3]) << 24);
898  uint32 part1 = (static_cast<uint32>(buffer[4]) ) |
899  (static_cast<uint32>(buffer[5]) << 8) |
900  (static_cast<uint32>(buffer[6]) << 16) |
901  (static_cast<uint32>(buffer[7]) << 24);
902  *value = static_cast<uint64>(part0) |
903  (static_cast<uint64>(part1) << 32);
904  return buffer + sizeof(*value);
905 #endif
906 }
907 
909 #if defined(PROTOBUF_LITTLE_ENDIAN)
910  if (GOOGLE_PREDICT_TRUE(BufferSize() >= static_cast<int>(sizeof(*value)))) {
911  memcpy(value, buffer_, sizeof(*value));
912  Advance(sizeof(*value));
913  return true;
914  } else {
915  return ReadLittleEndian32Fallback(value);
916  }
917 #else
918  return ReadLittleEndian32Fallback(value);
919 #endif
920 }
921 
923 #if defined(PROTOBUF_LITTLE_ENDIAN)
924  if (GOOGLE_PREDICT_TRUE(BufferSize() >= static_cast<int>(sizeof(*value)))) {
925  memcpy(value, buffer_, sizeof(*value));
926  Advance(sizeof(*value));
927  return true;
928  } else {
929  return ReadLittleEndian64Fallback(value);
930  }
931 #else
932  return ReadLittleEndian64Fallback(value);
933 #endif
934 }
935 
937  uint32 v = 0;
938  if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_)) {
939  v = *buffer_;
940  if (v < 0x80) {
941  last_tag_ = v;
942  Advance(1);
943  return v;
944  }
945  }
946  last_tag_ = ReadTagFallback(v);
947  return last_tag_;
948 }
949 
950 inline std::pair<uint32, bool> CodedInputStream::ReadTagWithCutoff(
951  uint32 cutoff) {
952  // In performance-sensitive code we can expect cutoff to be a compile-time
953  // constant, and things like "cutoff >= kMax1ByteVarint" to be evaluated at
954  // compile time.
955  uint32 first_byte_or_zero = 0;
956  if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_)) {
957  // Hot case: buffer_ non_empty, buffer_[0] in [1, 128).
958  // TODO(gpike): Is it worth rearranging this? E.g., if the number of fields
959  // is large enough then is it better to check for the two-byte case first?
960  first_byte_or_zero = buffer_[0];
961  if (static_cast<int8>(buffer_[0]) > 0) {
962  const uint32 kMax1ByteVarint = 0x7f;
963  uint32 tag = last_tag_ = buffer_[0];
964  Advance(1);
965  return std::make_pair(tag, cutoff >= kMax1ByteVarint || tag <= cutoff);
966  }
967  // Other hot case: cutoff >= 0x80, buffer_ has at least two bytes available,
968  // and tag is two bytes. The latter is tested by bitwise-and-not of the
969  // first byte and the second byte.
970  if (cutoff >= 0x80 &&
971  GOOGLE_PREDICT_TRUE(buffer_ + 1 < buffer_end_) &&
972  GOOGLE_PREDICT_TRUE((buffer_[0] & ~buffer_[1]) >= 0x80)) {
973  const uint32 kMax2ByteVarint = (0x7f << 7) + 0x7f;
974  uint32 tag = last_tag_ = (1u << 7) * buffer_[1] + (buffer_[0] - 0x80);
975  Advance(2);
976  // It might make sense to test for tag == 0 now, but it is so rare that
977  // that we don't bother. A varint-encoded 0 should be one byte unless
978  // the encoder lost its mind. The second part of the return value of
979  // this function is allowed to be either true or false if the tag is 0,
980  // so we don't have to check for tag == 0. We may need to check whether
981  // it exceeds cutoff.
982  bool at_or_below_cutoff = cutoff >= kMax2ByteVarint || tag <= cutoff;
983  return std::make_pair(tag, at_or_below_cutoff);
984  }
985  }
986  // Slow path
987  last_tag_ = ReadTagFallback(first_byte_or_zero);
988  return std::make_pair(last_tag_, static_cast<uint32>(last_tag_ - 1) < cutoff);
989 }
990 
992  return last_tag_ == expected;
993 }
994 
996  return legitimate_message_end_;
997 }
998 
1000  if (expected < (1 << 7)) {
1001  if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && buffer_[0] == expected) {
1002  Advance(1);
1003  return true;
1004  } else {
1005  return false;
1006  }
1007  } else if (expected < (1 << 14)) {
1008  if (GOOGLE_PREDICT_TRUE(BufferSize() >= 2) &&
1009  buffer_[0] == static_cast<uint8>(expected | 0x80) &&
1010  buffer_[1] == static_cast<uint8>(expected >> 7)) {
1011  Advance(2);
1012  return true;
1013  } else {
1014  return false;
1015  }
1016  } else {
1017  // Don't bother optimizing for larger values.
1018  return false;
1019  }
1020 }
1021 
1023  const uint8* buffer, uint32 expected) {
1024  if (expected < (1 << 7)) {
1025  if (buffer[0] == expected) {
1026  return buffer + 1;
1027  }
1028  } else if (expected < (1 << 14)) {
1029  if (buffer[0] == static_cast<uint8>(expected | 0x80) &&
1030  buffer[1] == static_cast<uint8>(expected >> 7)) {
1031  return buffer + 2;
1032  }
1033  }
1034  return NULL;
1035 }
1036 
1038  int* size) {
1039  *data = buffer_;
1040  *size = static_cast<int>(buffer_end_ - buffer_);
1041 }
1042 
1044  // If we are at a limit we know no more bytes can be read. Otherwise, it's
1045  // hard to say without calling Refresh(), and we'd rather not do that.
1046 
1047  if (buffer_ == buffer_end_ &&
1048  ((buffer_size_after_limit_ != 0) ||
1049  (total_bytes_read_ == current_limit_))) {
1050  last_tag_ = 0; // Pretend we called ReadTag()...
1051  legitimate_message_end_ = true; // ... and it hit EOF.
1052  return true;
1053  } else {
1054  return false;
1055  }
1056 }
1057 
1059  return total_bytes_read_ - (BufferSize() + buffer_size_after_limit_);
1060 }
1061 
1063  if (buffer_size_ < size) {
1064  return NULL;
1065  } else {
1066  uint8* result = buffer_;
1067  Advance(size);
1068  return result;
1069  }
1070 }
1071 
1073  uint8* target) {
1074  while (value >= 0x80) {
1075  *target = static_cast<uint8>(value | 0x80);
1076  value >>= 7;
1077  ++target;
1078  }
1079  *target = static_cast<uint8>(value);
1080  return target + 1;
1081 }
1082 
1084  if (value < 0) {
1085  WriteVarint64(static_cast<uint64>(value));
1086  } else {
1087  WriteVarint32(static_cast<uint32>(value));
1088  }
1089 }
1090 
1092  int32 value, uint8* target) {
1093  if (value < 0) {
1094  return WriteVarint64ToArray(static_cast<uint64>(value), target);
1095  } else {
1096  return WriteVarint32ToArray(static_cast<uint32>(value), target);
1097  }
1098 }
1099 
1101  uint8* target) {
1102 #if defined(PROTOBUF_LITTLE_ENDIAN)
1103  memcpy(target, &value, sizeof(value));
1104 #else
1105  target[0] = static_cast<uint8>(value);
1106  target[1] = static_cast<uint8>(value >> 8);
1107  target[2] = static_cast<uint8>(value >> 16);
1108  target[3] = static_cast<uint8>(value >> 24);
1109 #endif
1110  return target + sizeof(value);
1111 }
1112 
1114  uint8* target) {
1115 #if defined(PROTOBUF_LITTLE_ENDIAN)
1116  memcpy(target, &value, sizeof(value));
1117 #else
1118  uint32 part0 = static_cast<uint32>(value);
1119  uint32 part1 = static_cast<uint32>(value >> 32);
1120 
1121  target[0] = static_cast<uint8>(part0);
1122  target[1] = static_cast<uint8>(part0 >> 8);
1123  target[2] = static_cast<uint8>(part0 >> 16);
1124  target[3] = static_cast<uint8>(part0 >> 24);
1125  target[4] = static_cast<uint8>(part1);
1126  target[5] = static_cast<uint8>(part1 >> 8);
1127  target[6] = static_cast<uint8>(part1 >> 16);
1128  target[7] = static_cast<uint8>(part1 >> 24);
1129 #endif
1130  return target + sizeof(value);
1131 }
1132 
1134  if (buffer_size_ >= 5) {
1135  // Fast path: We have enough bytes left in the buffer to guarantee that
1136  // this write won't cross the end, so we can skip the checks.
1137  uint8* target = buffer_;
1138  uint8* end = WriteVarint32ToArray(value, target);
1139  int size = static_cast<int>(end - target);
1140  Advance(size);
1141  } else {
1142  WriteVarint32SlowPath(value);
1143  }
1144 }
1145 
1147  WriteVarint32(value);
1148 }
1149 
1151  uint32 value, uint8* target) {
1152  return WriteVarint32ToArray(value, target);
1153 }
1154 
1156  if (value < (1 << 7)) {
1157  return 1;
1158  } else {
1159  return VarintSize32Fallback(value);
1160  }
1161 }
1162 
1164  if (value < 0) {
1165  return 10; // TODO(kenton): Make this a symbolic constant.
1166  } else {
1167  return VarintSize32(static_cast<uint32>(value));
1168  }
1169 }
1170 
1171 inline void CodedOutputStream::WriteString(const string& str) {
1172  WriteRaw(str.data(), static_cast<int>(str.size()));
1173 }
1174 
1176  const void* data, int size) {
1177  if (aliasing_enabled_) {
1178  WriteAliasedRaw(data, size);
1179  } else {
1180  WriteRaw(data, size);
1181  }
1182 }
1183 
1185  const string& str, uint8* target) {
1186  return WriteRawToArray(str.data(), static_cast<int>(str.size()), target);
1187 }
1188 
1189 inline int CodedOutputStream::ByteCount() const {
1190  return total_bytes_ - buffer_size_;
1191 }
1192 
1193 inline void CodedInputStream::Advance(int amount) {
1194  buffer_ += amount;
1195 }
1196 
1197 inline void CodedOutputStream::Advance(int amount) {
1198  buffer_ += amount;
1199  buffer_size_ -= amount;
1200 }
1201 
1202 inline void CodedInputStream::SetRecursionLimit(int limit) {
1203  recursion_budget_ += limit - recursion_limit_;
1204  recursion_limit_ = limit;
1205 }
1206 
1208  --recursion_budget_;
1209  return recursion_budget_ >= 0;
1210 }
1211 
1213  if (recursion_budget_ < recursion_limit_) ++recursion_budget_;
1214 }
1215 
1217  assert(recursion_budget_ < recursion_limit_);
1218  ++recursion_budget_;
1219 }
1220 
1223  extension_pool_ = pool;
1224  extension_factory_ = factory;
1225 }
1226 
1228  return extension_pool_;
1229 }
1230 
1232  return extension_factory_;
1233 }
1234 
1235 inline int CodedInputStream::BufferSize() const {
1236  return static_cast<int>(buffer_end_ - buffer_);
1237 }
1238 
1240  : buffer_(NULL),
1241  buffer_end_(NULL),
1242  input_(input),
1243  total_bytes_read_(0),
1244  overflow_bytes_(0),
1245  last_tag_(0),
1246  legitimate_message_end_(false),
1247  aliasing_enabled_(false),
1248  current_limit_(kint32max),
1249  buffer_size_after_limit_(0),
1250  total_bytes_limit_(kDefaultTotalBytesLimit),
1251  total_bytes_warning_threshold_(kDefaultTotalBytesWarningThreshold),
1252  recursion_budget_(default_recursion_limit_),
1253  recursion_limit_(default_recursion_limit_),
1254  extension_pool_(NULL),
1255  extension_factory_(NULL) {
1256  // Eagerly Refresh() so buffer space is immediately available.
1257  Refresh();
1258 }
1259 
1261  : buffer_(buffer),
1262  buffer_end_(buffer + size),
1263  input_(NULL),
1264  total_bytes_read_(size),
1265  overflow_bytes_(0),
1266  last_tag_(0),
1267  legitimate_message_end_(false),
1268  aliasing_enabled_(false),
1269  current_limit_(size),
1270  buffer_size_after_limit_(0),
1271  total_bytes_limit_(kDefaultTotalBytesLimit),
1272  total_bytes_warning_threshold_(kDefaultTotalBytesWarningThreshold),
1273  recursion_budget_(default_recursion_limit_),
1274  recursion_limit_(default_recursion_limit_),
1275  extension_pool_(NULL),
1276  extension_factory_(NULL) {
1277  // Note that setting current_limit_ == size is important to prevent some
1278  // code paths from trying to access input_ and segfaulting.
1279 }
1280 
1281 inline bool CodedInputStream::IsFlat() const {
1282  return input_ == NULL;
1283 }
1284 
1285 } // namespace io
1286 } // namespace protobuf
1287 
1288 
1289 #if _MSC_VER >= 1300 && !defined(__INTEL_COMPILER)
1290  #pragma runtime_checks("c", restore)
1291 #endif // _MSC_VER && !defined(__INTEL_COMPILER)
1292 
1293 } // namespace google
1294 #endif // GOOGLE_PROTOBUF_IO_CODED_STREAM_H__
static uint8 * WriteVarint32SignExtendedToArray(int32 value, uint8 *target)
Definition: coded_stream.h:1091
GLint GLsizei count
Definition: gl2.h:421
EGLStreamKHR EGLint EGLint EGLint size
Definition: eglext.h:984
DOMString p
Definition: WebCryptoAPI.idl:116
#define kint32max
Definition: main.cpp:12
GLuint GLuint end
Definition: gl2ext.h:323
uint8 * GetDirectBufferForNBytesAndAdvance(int size)
Definition: coded_stream.h:1062
#define GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(TypeName)
Definition: macros.h:40
bool HadError() const
Definition: coded_stream.h:801
OPENSSL_EXPORT pem_password_cb void * u
Definition: pem.h:398
static int VarintSize32(uint32 value)
Definition: coded_stream.h:1155
NSMutableData * buffer_
Definition: GPBCodedOutputStream.m:49
Definition: xmlparse.c:181
EGLContext EGLenum target
Definition: eglext.h:192
bool IncrementRecursionDepth()
Definition: coded_stream.h:1207
bool ReadVarint32(uint32 *value)
Definition: coded_stream.h:845
uint8_t uint8
Definition: port.h:133
static uint8 * WriteVarint32ToArray(uint32 value, uint8 *target)
Definition: coded_stream.h:1072
void WriteString(const string &str)
Definition: coded_stream.h:1171
static const uint8 * ReadLittleEndian64FromArray(const uint8 *buffer, uint64 *value)
Definition: coded_stream.h:887
bool ExpectAtEnd()
Definition: coded_stream.h:1043
#define GOOGLE_ATTRIBUTE_ALWAYS_INLINE
Definition: port.h:175
void WriteRawMaybeAliased(const void *data, int size)
Definition: coded_stream.h:1175
bool IsFlat() const
Definition: coded_stream.h:1281
const DescriptorPool * GetExtensionPool()
Definition: coded_stream.h:1227
static const uint8 * ReadLittleEndian32FromArray(const uint8 *buffer, uint32 *value)
Definition: coded_stream.h:872
CodedInputStream(ZeroCopyInputStream *input)
Definition: coded_stream.h:1239
GLenum GLenum GLsizei const GLuint GLboolean enabled
Definition: gl2ext.h:133
void WriteVarint32SignExtended(int32 value)
Definition: coded_stream.h:1083
#define output
Definition: wire_format_lite.h:418
void UnsafeDecrementRecursionDepth()
Definition: coded_stream.h:1216
static uint8 * WriteStringToArray(const string &str, uint8 *target)
Definition: coded_stream.h:1184
void DecrementRecursionDepth()
Definition: coded_stream.h:1212
const FieldDescriptor const OneofDescriptor value
Definition: descriptor.h:1717
int32_t int32
Definition: port.h:130
bool LastTagWas(uint32 expected)
Definition: coded_stream.h:991
Definition: zero_copy_stream.h:181
rtc::scoped_refptr< PeerConnectionFactoryInterface > factory(webrtc::CreatePeerConnectionFactory(network_thread.get(), worker_thread.get(), signaling_thread.get(), nullptr, encoder_factory, decoder_factory))
Definition: peerconnection_jni.cc:1838
void WriteTag(uint32 value)
Definition: coded_stream.h:1146
EGLAttrib * value
Definition: eglext.h:120
int Limit
Definition: coded_stream.h:314
static int VarintSize32SignExtended(int32 value)
Definition: coded_stream.h:1163
bool ReadLittleEndian32(uint32 *value)
Definition: coded_stream.h:908
#define BufferSize
Definition: testbindings.cpp:342
Definition: protobuf.h:64
uint32_t uint32
Definition: port.h:135
Definition: __init__.py:1
uint64_t uint64
Definition: port.h:136
static GOOGLE_ATTRIBUTE_ALWAYS_INLINE uint8 * WriteTagToArray(uint32 value, uint8 *target)
Definition: coded_stream.h:1150
GOOGLE_ATTRIBUTE_ALWAYS_INLINE uint32 ReadTag()
Definition: coded_stream.h:936
static GOOGLE_ATTRIBUTE_ALWAYS_INLINE const uint8 * ExpectTagFromArray(const uint8 *buffer, uint32 expected)
Definition: coded_stream.h:1022
const GLfloat * v
Definition: gl2.h:514
string expected
Definition: buildtests.py:33
MessageFactory * GetExtensionFactory()
Definition: coded_stream.h:1231
void SetRecursionLimit(int limit)
Definition: coded_stream.h:1202
GOOGLE_ATTRIBUTE_ALWAYS_INLINE std::pair< uint32, bool > ReadTagWithCutoff(uint32 cutoff)
Definition: coded_stream.h:950
#define GOOGLE_PREDICT_TRUE(x)
Definition: port.h:207
EGLStreamKHR EGLint EGLint EGLint const void * data
Definition: eglext.h:984
str
Definition: make-dist.py:305
Definition: struct.pb.h:161
result
Definition: target-blank-opener-post-window.php:5
bool ReadVarint64(uint64 *value)
Definition: coded_stream.h:860
google::protobuf::scoped_ptr< io::Tokenizer > input_
Definition: parser_unittest.cc:182
Definition: descriptor.h:1355
bool ReadLittleEndian64(uint64 *value)
Definition: coded_stream.h:922
GOOGLE_ATTRIBUTE_ALWAYS_INLINE void GetDirectBufferPointerInline(const void **data, int *size)
Definition: coded_stream.h:1037
int64_t int64
Definition: port.h:131
#define false
Definition: float-mm.c:5
def ReadTag(buffer, pos)
Definition: decoder.py:169
static uint8 * WriteLittleEndian32ToArray(uint32 value, uint8 *target)
Definition: coded_stream.h:1100
#define NULL
Definition: common_types.h:41
Definition: zero_copy_stream.h:124
void SetExtensionRegistry(const DescriptorPool *pool, MessageFactory *factory)
Definition: coded_stream.h:1221
GOOGLE_ATTRIBUTE_ALWAYS_INLINE bool ExpectTag(uint32 expected)
Definition: coded_stream.h:999
#define LIBPROTOBUF_EXPORT
Definition: port.h:97
Definition: gflags_completions.h:115
string input
Definition: tokenizer_unittest.cc:198
Definition: coded_stream.h:665
EGLContext EGLenum EGLClientBuffer buffer
Definition: eglext.h:192
Definition: message.h:1006
void WriteVarint32(uint32 value)
Definition: coded_stream.h:1133
def Skip(lines, pos, regex)
Definition: pump.py:251
Definition: coded_stream.h:159
DOMString amount
Definition: ApplePayLineItem.idl:38
int CurrentPosition() const
Definition: coded_stream.h:1058
static uint8 * WriteLittleEndian64ToArray(uint64 value, uint8 *target)
Definition: coded_stream.h:1113
int ByteCount() const
Definition: coded_stream.h:1189
bool ConsumedEntireMessage()
Definition: coded_stream.h:995