webkit  2cdf99a9e3038c7e01b3c37e8ad903ecbe5eecf1
https://github.com/WebKit/webkit
bn.h
Go to the documentation of this file.
1 /* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to. The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  * notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  * notice, this list of conditions and the following disclaimer in the
29  * documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  * must display the following acknowledgement:
32  * "This product includes cryptographic software written by
33  * Eric Young (eay@cryptsoft.com)"
34  * The word 'cryptographic' can be left out if the rouines from the library
35  * being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  * the apps directory (application code) you must include an acknowledgement:
38  * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed. i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.]
56  */
57 /* ====================================================================
58  * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved.
59  *
60  * Redistribution and use in source and binary forms, with or without
61  * modification, are permitted provided that the following conditions
62  * are met:
63  *
64  * 1. Redistributions of source code must retain the above copyright
65  * notice, this list of conditions and the following disclaimer.
66  *
67  * 2. Redistributions in binary form must reproduce the above copyright
68  * notice, this list of conditions and the following disclaimer in
69  * the documentation and/or other materials provided with the
70  * distribution.
71  *
72  * 3. All advertising materials mentioning features or use of this
73  * software must display the following acknowledgment:
74  * "This product includes software developed by the OpenSSL Project
75  * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76  *
77  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78  * endorse or promote products derived from this software without
79  * prior written permission. For written permission, please contact
80  * openssl-core@openssl.org.
81  *
82  * 5. Products derived from this software may not be called "OpenSSL"
83  * nor may "OpenSSL" appear in their names without prior written
84  * permission of the OpenSSL Project.
85  *
86  * 6. Redistributions of any form whatsoever must retain the following
87  * acknowledgment:
88  * "This product includes software developed by the OpenSSL Project
89  * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90  *
91  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
95  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102  * OF THE POSSIBILITY OF SUCH DAMAGE.
103  * ====================================================================
104  *
105  * This product includes cryptographic software written by Eric Young
106  * (eay@cryptsoft.com). This product includes software written by Tim
107  * Hudson (tjh@cryptsoft.com).
108  *
109  */
110 /* ====================================================================
111  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
112  *
113  * Portions of the attached software ("Contribution") are developed by
114  * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
115  *
116  * The Contribution is licensed pursuant to the Eric Young open source
117  * license provided above.
118  *
119  * The binary polynomial arithmetic software is originally written by
120  * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
121  * Laboratories. */
122 
123 #ifndef OPENSSL_HEADER_BN_H
124 #define OPENSSL_HEADER_BN_H
125 
126 #include <openssl/base.h>
127 #include <openssl/thread.h>
128 
129 #include <inttypes.h> /* for PRIu64 and friends */
130 #include <stdio.h> /* for FILE* */
131 
132 #if defined(__cplusplus)
133 extern "C" {
134 #endif
135 
136 
137 /* BN provides support for working with arbitary sized integers. For example,
138  * although the largest integer supported by the compiler might be 64 bits, BN
139  * will allow you to work with numbers until you run out of memory. */
140 
141 
142 /* BN_ULONG is the native word size when working with big integers.
143  *
144  * Note: on some platforms, inttypes.h does not define print format macros in
145  * C++ unless |__STDC_FORMAT_MACROS| defined. As this is a public header, bn.h
146  * does not define |__STDC_FORMAT_MACROS| itself. C++ source files which use the
147  * FMT macros must define it externally. */
148 #if defined(OPENSSL_64_BIT)
149 #define BN_ULONG uint64_t
150 #define BN_BITS2 64
151 #define BN_DEC_FMT1 "%" PRIu64
152 #define BN_DEC_FMT2 "%019" PRIu64
153 #define BN_HEX_FMT1 "%" PRIx64
154 #elif defined(OPENSSL_32_BIT)
155 #define BN_ULONG uint32_t
156 #define BN_BITS2 32
157 #define BN_DEC_FMT1 "%" PRIu32
158 #define BN_DEC_FMT2 "%09" PRIu32
159 #define BN_HEX_FMT1 "%" PRIx32
160 #else
161 #error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT"
162 #endif
163 
164 
165 /* Allocation and freeing. */
166 
167 /* BN_new creates a new, allocated BIGNUM and initialises it. */
169 
170 /* BN_init initialises a stack allocated |BIGNUM|. */
171 OPENSSL_EXPORT void BN_init(BIGNUM *bn);
172 
173 /* BN_free frees the data referenced by |bn| and, if |bn| was originally
174  * allocated on the heap, frees |bn| also. */
175 OPENSSL_EXPORT void BN_free(BIGNUM *bn);
176 
177 /* BN_clear_free erases and frees the data referenced by |bn| and, if |bn| was
178  * originally allocated on the heap, frees |bn| also. */
180 
181 /* BN_dup allocates a new BIGNUM and sets it equal to |src|. It returns the
182  * allocated BIGNUM on success or NULL otherwise. */
184 
185 /* BN_copy sets |dest| equal to |src| and returns |dest| or NULL on allocation
186  * failure. */
188 
189 /* BN_clear sets |bn| to zero and erases the old data. */
190 OPENSSL_EXPORT void BN_clear(BIGNUM *bn);
191 
192 /* BN_value_one returns a static BIGNUM with value 1. */
193 OPENSSL_EXPORT const BIGNUM *BN_value_one(void);
194 
195 /* BN_with_flags initialises a stack allocated |BIGNUM| with pointers to the
196  * contents of |in| but with |flags| ORed into the flags field.
197  *
198  * Note: the two BIGNUMs share state and so |out| should /not/ be passed to
199  * |BN_free|. */
200 OPENSSL_EXPORT void BN_with_flags(BIGNUM *out, const BIGNUM *in, int flags);
201 
202 
203 /* Basic functions. */
204 
205 /* BN_num_bits returns the minimum number of bits needed to represent the
206  * absolute value of |bn|. */
207 OPENSSL_EXPORT unsigned BN_num_bits(const BIGNUM *bn);
208 
209 /* BN_num_bytes returns the minimum number of bytes needed to represent the
210  * absolute value of |bn|. */
211 OPENSSL_EXPORT unsigned BN_num_bytes(const BIGNUM *bn);
212 
213 /* BN_zero sets |bn| to zero. */
214 OPENSSL_EXPORT void BN_zero(BIGNUM *bn);
215 
216 /* BN_one sets |bn| to one. It returns one on success or zero on allocation
217  * failure. */
218 OPENSSL_EXPORT int BN_one(BIGNUM *bn);
219 
220 /* BN_set_word sets |bn| to |value|. It returns one on success or zero on
221  * allocation failure. */
222 OPENSSL_EXPORT int BN_set_word(BIGNUM *bn, BN_ULONG value);
223 
224 /* BN_set_u64 sets |bn| to |value|. It returns one on success or zero on
225  * allocation failure. */
227 
228 /* BN_set_negative sets the sign of |bn|. */
230 
231 /* BN_is_negative returns one if |bn| is negative and zero otherwise. */
232 OPENSSL_EXPORT int BN_is_negative(const BIGNUM *bn);
233 
234 /* BN_get_flags returns |bn->flags| & |flags|. */
235 OPENSSL_EXPORT int BN_get_flags(const BIGNUM *bn, int flags);
236 
237 /* BN_set_flags sets |flags| on |bn|. */
238 OPENSSL_EXPORT void BN_set_flags(BIGNUM *bn, int flags);
239 
240 
241 /* Conversion functions. */
242 
243 /* BN_bin2bn sets |*ret| to the value of |len| bytes from |in|, interpreted as
244  * a big-endian number, and returns |ret|. If |ret| is NULL then a fresh
245  * |BIGNUM| is allocated and returned. It returns NULL on allocation
246  * failure. */
247 OPENSSL_EXPORT BIGNUM *BN_bin2bn(const uint8_t *in, size_t len, BIGNUM *ret);
248 
249 /* BN_bn2bin serialises the absolute value of |in| to |out| as a big-endian
250  * integer, which must have |BN_num_bytes| of space available. It returns the
251  * number of bytes written. */
252 OPENSSL_EXPORT size_t BN_bn2bin(const BIGNUM *in, uint8_t *out);
253 
254 /* BN_bn2bin_padded serialises the absolute value of |in| to |out| as a
255  * big-endian integer. The integer is padded with leading zeros up to size
256  * |len|. If |len| is smaller than |BN_num_bytes|, the function fails and
257  * returns 0. Otherwise, it returns 1. */
258 OPENSSL_EXPORT int BN_bn2bin_padded(uint8_t *out, size_t len, const BIGNUM *in);
259 
260 /* BN_bn2cbb_padded behaves like |BN_bn2bin_padded| but writes to a |CBB|. */
261 OPENSSL_EXPORT int BN_bn2cbb_padded(CBB *out, size_t len, const BIGNUM *in);
262 
263 /* BN_bn2hex returns an allocated string that contains a NUL-terminated, hex
264  * representation of |bn|. If |bn| is negative, the first char in the resulting
265  * string will be '-'. Returns NULL on allocation failure. */
266 OPENSSL_EXPORT char *BN_bn2hex(const BIGNUM *bn);
267 
268 /* BN_hex2bn parses the leading hex number from |in|, which may be proceeded by
269  * a '-' to indicate a negative number and may contain trailing, non-hex data.
270  * If |outp| is not NULL, it constructs a BIGNUM equal to the hex number and
271  * stores it in |*outp|. If |*outp| is NULL then it allocates a new BIGNUM and
272  * updates |*outp|. It returns the number of bytes of |in| processed or zero on
273  * error. */
274 OPENSSL_EXPORT int BN_hex2bn(BIGNUM **outp, const char *in);
275 
276 /* BN_bn2dec returns an allocated string that contains a NUL-terminated,
277  * decimal representation of |bn|. If |bn| is negative, the first char in the
278  * resulting string will be '-'. Returns NULL on allocation failure. */
279 OPENSSL_EXPORT char *BN_bn2dec(const BIGNUM *a);
280 
281 /* BN_dec2bn parses the leading decimal number from |in|, which may be
282  * proceeded by a '-' to indicate a negative number and may contain trailing,
283  * non-decimal data. If |outp| is not NULL, it constructs a BIGNUM equal to the
284  * decimal number and stores it in |*outp|. If |*outp| is NULL then it
285  * allocates a new BIGNUM and updates |*outp|. It returns the number of bytes
286  * of |in| processed or zero on error. */
287 OPENSSL_EXPORT int BN_dec2bn(BIGNUM **outp, const char *in);
288 
289 /* BN_asc2bn acts like |BN_dec2bn| or |BN_hex2bn| depending on whether |in|
290  * begins with "0X" or "0x" (indicating hex) or not (indicating decimal). A
291  * leading '-' is still permitted and comes before the optional 0X/0x. It
292  * returns one on success or zero on error. */
293 OPENSSL_EXPORT int BN_asc2bn(BIGNUM **outp, const char *in);
294 
295 /* BN_print writes a hex encoding of |a| to |bio|. It returns one on success
296  * and zero on error. */
297 OPENSSL_EXPORT int BN_print(BIO *bio, const BIGNUM *a);
298 
299 /* BN_print_fp acts like |BIO_print|, but wraps |fp| in a |BIO| first. */
300 OPENSSL_EXPORT int BN_print_fp(FILE *fp, const BIGNUM *a);
301 
302 /* BN_get_word returns the absolute value of |bn| as a single word. If |bn| is
303  * too large to be represented as a single word, the maximum possible value
304  * will be returned. */
305 OPENSSL_EXPORT BN_ULONG BN_get_word(const BIGNUM *bn);
306 
307 
308 /* ASN.1 functions. */
309 
310 /* BN_parse_asn1_unsigned parses a non-negative DER INTEGER from |cbs| writes
311  * the result to |ret|. It returns one on success and zero on failure. */
313 
314 /* BN_parse_asn1_unsigned_buggy acts like |BN_parse_asn1_unsigned| but tolerates
315  * some invalid encodings. Do not use this function. */
317 
318 /* BN_marshal_asn1 marshals |bn| as a non-negative DER INTEGER and appends the
319  * result to |cbb|. It returns one on success and zero on failure. */
320 OPENSSL_EXPORT int BN_marshal_asn1(CBB *cbb, const BIGNUM *bn);
321 
322 
323 /* Internal functions.
324  *
325  * These functions are useful for code that is doing low-level manipulations of
326  * BIGNUM values. However, be sure that no other function in this file does
327  * what you want before turning to these. */
328 
329 /* bn_correct_top decrements |bn->top| until |bn->d[top-1]| is non-zero or
330  * until |top| is zero. If |bn| is zero, |bn->neg| is set to zero. */
332 
333 /* bn_wexpand ensures that |bn| has at least |words| works of space without
334  * altering its value. It returns |bn| on success or NULL on allocation
335  * failure. */
337 
338 
339 /* BIGNUM pools.
340  *
341  * Certain BIGNUM operations need to use many temporary variables and
342  * allocating and freeing them can be quite slow. Thus such opertions typically
343  * take a |BN_CTX| parameter, which contains a pool of |BIGNUMs|. The |ctx|
344  * argument to a public function may be NULL, in which case a local |BN_CTX|
345  * will be created just for the lifetime of that call.
346  *
347  * A function must call |BN_CTX_start| first. Then, |BN_CTX_get| may be called
348  * repeatedly to obtain temporary |BIGNUM|s. All |BN_CTX_get| calls must be made
349  * before calling any other functions that use the |ctx| as an argument.
350  *
351  * Finally, |BN_CTX_end| must be called before returning from the function.
352  * When |BN_CTX_end| is called, the |BIGNUM| pointers obtained from
353  * |BN_CTX_get| become invalid. */
354 
355 /* BN_CTX_new returns a new, empty BN_CTX or NULL on allocation failure. */
357 
358 /* BN_CTX_free frees all BIGNUMs contained in |ctx| and then frees |ctx|
359  * itself. */
361 
362 /* BN_CTX_start "pushes" a new entry onto the |ctx| stack and allows future
363  * calls to |BN_CTX_get|. */
365 
366 /* BN_CTX_get returns a new |BIGNUM|, or NULL on allocation failure. Once
367  * |BN_CTX_get| has returned NULL, all future calls will also return NULL until
368  * |BN_CTX_end| is called. */
370 
371 /* BN_CTX_end invalidates all |BIGNUM|s returned from |BN_CTX_get| since the
372  * matching |BN_CTX_start| call. */
374 
375 
376 /* Simple arithmetic */
377 
378 /* BN_add sets |r| = |a| + |b|, where |r| may be the same pointer as either |a|
379  * or |b|. It returns one on success and zero on allocation failure. */
380 OPENSSL_EXPORT int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
381 
382 /* BN_uadd sets |r| = |a| + |b|, where |a| and |b| are non-negative and |r| may
383  * be the same pointer as either |a| or |b|. It returns one on success and zero
384  * on allocation failure. */
385 OPENSSL_EXPORT int BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
386 
387 /* BN_add_word adds |w| to |a|. It returns one on success and zero otherwise. */
388 OPENSSL_EXPORT int BN_add_word(BIGNUM *a, BN_ULONG w);
389 
390 /* BN_sub sets |r| = |a| - |b|, where |r| may be the same pointer as either |a|
391  * or |b|. It returns one on success and zero on allocation failure. */
392 OPENSSL_EXPORT int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
393 
394 /* BN_usub sets |r| = |a| - |b|, where |a| and |b| are non-negative integers,
395  * |b| < |a| and |r| may be the same pointer as either |a| or |b|. It returns
396  * one on success and zero on allocation failure. */
397 OPENSSL_EXPORT int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
398 
399 /* BN_sub_word subtracts |w| from |a|. It returns one on success and zero on
400  * allocation failure. */
401 OPENSSL_EXPORT int BN_sub_word(BIGNUM *a, BN_ULONG w);
402 
403 /* BN_mul sets |r| = |a| * |b|, where |r| may be the same pointer as |a| or
404  * |b|. Returns one on success and zero otherwise. */
405 OPENSSL_EXPORT int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
406  BN_CTX *ctx);
407 
408 /* BN_mul_word sets |bn| = |bn| * |w|. It returns one on success or zero on
409  * allocation failure. */
410 OPENSSL_EXPORT int BN_mul_word(BIGNUM *bn, BN_ULONG w);
411 
412 /* BN_sqr sets |r| = |a|^2 (i.e. squares), where |r| may be the same pointer as
413  * |a|. Returns one on success and zero otherwise. This is more efficient than
414  * BN_mul(r, a, a, ctx). */
415 OPENSSL_EXPORT int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx);
416 
417 /* BN_div divides |numerator| by |divisor| and places the result in |quotient|
418  * and the remainder in |rem|. Either of |quotient| or |rem| may be NULL, in
419  * which case the respective value is not returned. The result is rounded
420  * towards zero; thus if |numerator| is negative, the remainder will be zero or
421  * negative. It returns one on success or zero on error. */
422 OPENSSL_EXPORT int BN_div(BIGNUM *quotient, BIGNUM *rem,
423  const BIGNUM *numerator, const BIGNUM *divisor,
424  BN_CTX *ctx);
425 
426 /* BN_div_word sets |numerator| = |numerator|/|divisor| and returns the
427  * remainder or (BN_ULONG)-1 on error. */
428 OPENSSL_EXPORT BN_ULONG BN_div_word(BIGNUM *numerator, BN_ULONG divisor);
429 
430 /* BN_sqrt sets |*out_sqrt| (which may be the same |BIGNUM| as |in|) to the
431  * square root of |in|, using |ctx|. It returns one on success or zero on
432  * error. Negative numbers and non-square numbers will result in an error with
433  * appropriate errors on the error queue. */
434 OPENSSL_EXPORT int BN_sqrt(BIGNUM *out_sqrt, const BIGNUM *in, BN_CTX *ctx);
435 
436 
437 /* Comparison functions */
438 
439 /* BN_cmp returns a value less than, equal to or greater than zero if |a| is
440  * less than, equal to or greater than |b|, respectively. */
441 OPENSSL_EXPORT int BN_cmp(const BIGNUM *a, const BIGNUM *b);
442 
443 /* BN_cmp_word is like |BN_cmp| except it takes its second argument as a
444  * |BN_ULONG| instead of a |BIGNUM|. */
445 OPENSSL_EXPORT int BN_cmp_word(const BIGNUM *a, BN_ULONG b);
446 
447 /* BN_ucmp returns a value less than, equal to or greater than zero if the
448  * absolute value of |a| is less than, equal to or greater than the absolute
449  * value of |b|, respectively. */
450 OPENSSL_EXPORT int BN_ucmp(const BIGNUM *a, const BIGNUM *b);
451 
452 /* BN_equal_consttime returns one if |a| is equal to |b|, and zero otherwise.
453  * It takes an amount of time dependent on the sizes of |a| and |b|, but
454  * independent of the contents (including the signs) of |a| and |b|. */
455 OPENSSL_EXPORT int BN_equal_consttime(const BIGNUM *a, const BIGNUM *b);
456 
457 /* BN_abs_is_word returns one if the absolute value of |bn| equals |w| and zero
458  * otherwise. */
459 OPENSSL_EXPORT int BN_abs_is_word(const BIGNUM *bn, BN_ULONG w);
460 
461 /* BN_is_zero returns one if |bn| is zero and zero otherwise. */
462 OPENSSL_EXPORT int BN_is_zero(const BIGNUM *bn);
463 
464 /* BN_is_one returns one if |bn| equals one and zero otherwise. */
465 OPENSSL_EXPORT int BN_is_one(const BIGNUM *bn);
466 
467 /* BN_is_word returns one if |bn| is exactly |w| and zero otherwise. */
468 OPENSSL_EXPORT int BN_is_word(const BIGNUM *bn, BN_ULONG w);
469 
470 /* BN_is_odd returns one if |bn| is odd and zero otherwise. */
471 OPENSSL_EXPORT int BN_is_odd(const BIGNUM *bn);
472 
473 
474 /* Bitwise operations. */
475 
476 /* BN_lshift sets |r| equal to |a| << n. The |a| and |r| arguments may be the
477  * same |BIGNUM|. It returns one on success and zero on allocation failure. */
478 OPENSSL_EXPORT int BN_lshift(BIGNUM *r, const BIGNUM *a, int n);
479 
480 /* BN_lshift1 sets |r| equal to |a| << 1, where |r| and |a| may be the same
481  * pointer. It returns one on success and zero on allocation failure. */
482 OPENSSL_EXPORT int BN_lshift1(BIGNUM *r, const BIGNUM *a);
483 
484 /* BN_rshift sets |r| equal to |a| >> n, where |r| and |a| may be the same
485  * pointer. It returns one on success and zero on allocation failure. */
486 OPENSSL_EXPORT int BN_rshift(BIGNUM *r, const BIGNUM *a, int n);
487 
488 /* BN_rshift1 sets |r| equal to |a| >> 1, where |r| and |a| may be the same
489  * pointer. It returns one on success and zero on allocation failure. */
490 OPENSSL_EXPORT int BN_rshift1(BIGNUM *r, const BIGNUM *a);
491 
492 /* BN_set_bit sets the |n|th, least-significant bit in |a|. For example, if |a|
493  * is 2 then setting bit zero will make it 3. It returns one on success or zero
494  * on allocation failure. */
495 OPENSSL_EXPORT int BN_set_bit(BIGNUM *a, int n);
496 
497 /* BN_clear_bit clears the |n|th, least-significant bit in |a|. For example, if
498  * |a| is 3, clearing bit zero will make it two. It returns one on success or
499  * zero on allocation failure. */
501 
502 /* BN_is_bit_set returns the value of the |n|th, least-significant bit in |a|,
503  * or zero if the bit doesn't exist. */
504 OPENSSL_EXPORT int BN_is_bit_set(const BIGNUM *a, int n);
505 
506 /* BN_mask_bits truncates |a| so that it is only |n| bits long. It returns one
507  * on success or zero if |n| is greater than the length of |a| already. */
509 
510 
511 /* Modulo arithmetic. */
512 
513 /* BN_mod_word returns |a| mod |w| or (BN_ULONG)-1 on error. */
514 OPENSSL_EXPORT BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w);
515 
516 /* BN_mod is a helper macro that calls |BN_div| and discards the quotient. */
517 #define BN_mod(rem, numerator, divisor, ctx) \
518  BN_div(NULL, (rem), (numerator), (divisor), (ctx))
519 
520 /* BN_nnmod is a non-negative modulo function. It acts like |BN_mod|, but 0 <=
521  * |rem| < |divisor| is always true. It returns one on success and zero on
522  * error. */
523 OPENSSL_EXPORT int BN_nnmod(BIGNUM *rem, const BIGNUM *numerator,
524  const BIGNUM *divisor, BN_CTX *ctx);
525 
526 /* BN_mod_add sets |r| = |a| + |b| mod |m|. It returns one on success and zero
527  * on error. */
528 OPENSSL_EXPORT int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
529  const BIGNUM *m, BN_CTX *ctx);
530 
531 /* BN_mod_add_quick acts like |BN_mod_add| but requires that |a| and |b| be
532  * non-negative and less than |m|. */
533 OPENSSL_EXPORT int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
534  const BIGNUM *m);
535 
536 /* BN_mod_sub sets |r| = |a| - |b| mod |m|. It returns one on success and zero
537  * on error. */
538 OPENSSL_EXPORT int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
539  const BIGNUM *m, BN_CTX *ctx);
540 
541 /* BN_mod_sub_quick acts like |BN_mod_sub| but requires that |a| and |b| be
542  * non-negative and less than |m|. */
543 OPENSSL_EXPORT int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
544  const BIGNUM *m);
545 
546 /* BN_mod_mul sets |r| = |a|*|b| mod |m|. It returns one on success and zero
547  * on error. */
548 OPENSSL_EXPORT int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
549  const BIGNUM *m, BN_CTX *ctx);
550 
551 /* BN_mod_sqr sets |r| = |a|^2 mod |m|. It returns one on success and zero
552  * on error. */
553 OPENSSL_EXPORT int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m,
554  BN_CTX *ctx);
555 
556 /* BN_mod_lshift sets |r| = (|a| << n) mod |m|, where |r| and |a| may be the
557  * same pointer. It returns one on success and zero on error. */
558 OPENSSL_EXPORT int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n,
559  const BIGNUM *m, BN_CTX *ctx);
560 
561 /* BN_mod_lshift_quick acts like |BN_mod_lshift| but requires that |a| be
562  * non-negative and less than |m|. */
564  const BIGNUM *m);
565 
566 /* BN_mod_lshift1 sets |r| = (|a| << 1) mod |m|, where |r| and |a| may be the
567  * same pointer. It returns one on success and zero on error. */
568 OPENSSL_EXPORT int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m,
569  BN_CTX *ctx);
570 
571 /* BN_mod_lshift1_quick acts like |BN_mod_lshift1| but requires that |a| be
572  * non-negative and less than |m|. */
574  const BIGNUM *m);
575 
576 /* BN_mod_sqrt returns a |BIGNUM|, r, such that r^2 == a (mod p). |p| must be a
577  * prime. */
578 OPENSSL_EXPORT BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p,
579  BN_CTX *ctx);
580 
581 
582 /* Random and prime number generation. */
583 
584 /* The following are values for the |top| parameter of |BN_rand|. */
585 #define BN_RAND_TOP_ANY -1
586 #define BN_RAND_TOP_ONE 0
587 #define BN_RAND_TOP_TWO 1
588 
589 /* The following are values for the |bottom| parameter of |BN_rand|. */
590 #define BN_RAND_BOTTOM_ANY 0
591 #define BN_RAND_BOTTOM_ODD 1
592 
593 /* BN_rand sets |rnd| to a random number of length |bits|. It returns one on
594  * success and zero otherwise.
595  *
596  * |top| must be one of the |BN_RAND_TOP_*| values. If |BN_RAND_TOP_ONE|, the
597  * most-significant bit, if any, will be set. If |BN_RAND_TOP_TWO|, the two
598  * most significant bits, if any, will be set. If |BN_RAND_TOP_ANY|, no extra
599  * action will be taken and |BN_num_bits(rnd)| may not equal |bits| if the most
600  * significant bits randomly ended up as zeros.
601  *
602  * |bottom| must be one of the |BN_RAND_BOTTOM_*| values. If
603  * |BN_RAND_BOTTOM_ODD|, the least-significant bit, if any, will be set. If
604  * |BN_RAND_BOTTOM_ANY|, no extra action will be taken. */
605 OPENSSL_EXPORT int BN_rand(BIGNUM *rnd, int bits, int top, int bottom);
606 
607 /* BN_pseudo_rand is an alias for |BN_rand|. */
608 OPENSSL_EXPORT int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom);
609 
610 /* BN_rand_range is equivalent to |BN_rand_range_ex| with |min_inclusive| set
611  * to zero and |max_exclusive| set to |range|. */
613 
614 /* BN_rand_range_ex sets |rnd| to a random value in
615  * [min_inclusive..max_exclusive). It returns one on success and zero
616  * otherwise. */
617 OPENSSL_EXPORT int BN_rand_range_ex(BIGNUM *r, BN_ULONG min_inclusive,
618  const BIGNUM *max_exclusive);
619 
620 /* BN_pseudo_rand_range is an alias for BN_rand_range. */
622 
623 /* BN_generate_dsa_nonce generates a random number 0 <= out < range. Unlike
624  * BN_rand_range, it also includes the contents of |priv| and |message| in the
625  * generation so that an RNG failure isn't fatal as long as |priv| remains
626  * secret. This is intended for use in DSA and ECDSA where an RNG weakness
627  * leads directly to private key exposure unless this function is used.
628  * It returns one on success and zero on error. */
630  const BIGNUM *priv,
631  const uint8_t *message,
632  size_t message_len, BN_CTX *ctx);
633 
634 /* BN_GENCB holds a callback function that is used by generation functions that
635  * can take a very long time to complete. Use |BN_GENCB_set| to initialise a
636  * |BN_GENCB| structure.
637  *
638  * The callback receives the address of that |BN_GENCB| structure as its last
639  * argument and the user is free to put an arbitary pointer in |arg|. The other
640  * arguments are set as follows:
641  * event=BN_GENCB_GENERATED, n=i: after generating the i'th possible prime
642  * number.
643  * event=BN_GENCB_PRIME_TEST, n=-1: when finished trial division primality
644  * checks.
645  * event=BN_GENCB_PRIME_TEST, n=i: when the i'th primality test has finished.
646  *
647  * The callback can return zero to abort the generation progress or one to
648  * allow it to continue.
649  *
650  * When other code needs to call a BN generation function it will often take a
651  * BN_GENCB argument and may call the function with other argument values. */
652 #define BN_GENCB_GENERATED 0
653 #define BN_GENCB_PRIME_TEST 1
654 
655 struct bn_gencb_st {
656  void *arg; /* callback-specific data */
657  int (*callback)(int event, int n, struct bn_gencb_st *);
658 };
659 
660 /* BN_GENCB_set configures |callback| to call |f| and sets |callout->arg| to
661  * |arg|. */
663  int (*f)(int event, int n,
664  struct bn_gencb_st *),
665  void *arg);
666 
667 /* BN_GENCB_call calls |callback|, if not NULL, and returns the return value of
668  * the callback, or 1 if |callback| is NULL. */
669 OPENSSL_EXPORT int BN_GENCB_call(BN_GENCB *callback, int event, int n);
670 
671 /* BN_generate_prime_ex sets |ret| to a prime number of |bits| length. If safe
672  * is non-zero then the prime will be such that (ret-1)/2 is also a prime.
673  * (This is needed for Diffie-Hellman groups to ensure that the only subgroups
674  * are of size 2 and (p-1)/2.).
675  *
676  * If |add| is not NULL, the prime will fulfill the condition |ret| % |add| ==
677  * |rem| in order to suit a given generator. (If |rem| is NULL then |ret| %
678  * |add| == 1.)
679  *
680  * If |cb| is not NULL, it will be called during processing to give an
681  * indication of progress. See the comments for |BN_GENCB|. It returns one on
682  * success and zero otherwise. */
684  const BIGNUM *add, const BIGNUM *rem,
685  BN_GENCB *cb);
686 
687 /* BN_prime_checks is magic value that can be used as the |checks| argument to
688  * the primality testing functions in order to automatically select a number of
689  * Miller-Rabin checks that gives a false positive rate of ~2^{-80}. */
690 #define BN_prime_checks 0
691 
692 /* BN_primality_test sets |*is_probably_prime| to one if |candidate| is
693  * probably a prime number by the Miller-Rabin test or zero if it's certainly
694  * not.
695  *
696  * If |do_trial_division| is non-zero then |candidate| will be tested against a
697  * list of small primes before Miller-Rabin tests. The probability of this
698  * function returning a false positive is 2^{2*checks}. If |checks| is
699  * |BN_prime_checks| then a value that results in approximately 2^{-80} false
700  * positive probability is used. If |cb| is not NULL then it is called during
701  * the checking process. See the comment above |BN_GENCB|.
702  *
703  * The function returns one on success and zero on error.
704  *
705  * (If you are unsure whether you want |do_trial_division|, don't set it.) */
706 OPENSSL_EXPORT int BN_primality_test(int *is_probably_prime,
707  const BIGNUM *candidate, int checks,
708  BN_CTX *ctx, int do_trial_division,
709  BN_GENCB *cb);
710 
711 /* BN_is_prime_fasttest_ex returns one if |candidate| is probably a prime
712  * number by the Miller-Rabin test, zero if it's certainly not and -1 on error.
713  *
714  * If |do_trial_division| is non-zero then |candidate| will be tested against a
715  * list of small primes before Miller-Rabin tests. The probability of this
716  * function returning one when |candidate| is composite is 2^{2*checks}. If
717  * |checks| is |BN_prime_checks| then a value that results in approximately
718  * 2^{-80} false positive probability is used. If |cb| is not NULL then it is
719  * called during the checking process. See the comment above |BN_GENCB|.
720  *
721  * WARNING: deprecated. Use |BN_primality_test|. */
723  BN_CTX *ctx, int do_trial_division,
724  BN_GENCB *cb);
725 
726 /* BN_is_prime_ex acts the same as |BN_is_prime_fasttest_ex| with
727  * |do_trial_division| set to zero.
728  *
729  * WARNING: deprecated: Use |BN_primality_test|. */
730 OPENSSL_EXPORT int BN_is_prime_ex(const BIGNUM *candidate, int checks,
731  BN_CTX *ctx, BN_GENCB *cb);
732 
733 
734 /* Number theory functions */
735 
736 /* BN_gcd sets |r| = gcd(|a|, |b|). It returns one on success and zero
737  * otherwise. */
738 OPENSSL_EXPORT int BN_gcd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
739  BN_CTX *ctx);
740 
741 /* BN_mod_inverse sets |out| equal to |a|^-1, mod |n|. If |out| is NULL, a
742  * fresh BIGNUM is allocated. It returns the result or NULL on error.
743  *
744  * If either of |a| or |n| have |BN_FLG_CONSTTIME| set then the operation is
745  * performed using an algorithm that avoids some branches but which isn't
746  * constant-time. This function shouldn't be used for secret values, even
747  * with |BN_FLG_CONSTTIME|; use |BN_mod_inverse_blinded| instead. Or, if
748  * |n| is guaranteed to be prime, use
749  * |BN_mod_exp_mont_consttime(out, a, m_minus_2, m, ctx, m_mont)|, taking
750  * advantage of Fermat's Little Theorem. */
752  const BIGNUM *n, BN_CTX *ctx);
753 
754 /* BN_mod_inverse_blinded sets |out| equal to |a|^-1, mod |n|, where |n| is the
755  * Montgomery modulus for |mont|. |a| must be non-negative and must be less
756  * than |n|. |n| must be greater than 1. |a| is blinded (masked by a random
757  * value) to protect it against side-channel attacks. |BN_mod_inverse_blinded|
758  * may or may not ignore the |BN_FLG_CONSTTIME| flag on any/all of its inputs.
759  * It returns one on success or zero on failure. On failure, if the failure was
760  * caused by |a| having no inverse mod |n| then |*out_no_inverse| will be set
761  * to one; otherwise it will be set to zero. */
762 int BN_mod_inverse_blinded(BIGNUM *out, int *out_no_inverse, const BIGNUM *a,
763  const BN_MONT_CTX *mont, BN_CTX *ctx);
764 
765 /* BN_mod_inverse_odd sets |out| equal to |a|^-1, mod |n|. |a| must be
766  * non-negative and must be less than |n|. |n| must be odd. This function
767  * shouldn't be used for secret values; use |BN_mod_inverse_blinded| instead.
768  * Or, if |n| is guaranteed to be prime, use
769  * |BN_mod_exp_mont_consttime(out, a, m_minus_2, m, ctx, m_mont)|, taking
770  * advantage of Fermat's Little Theorem. It returns one on success or zero on
771  * failure. On failure, if the failure was caused by |a| having no inverse mod
772  * |n| then |*out_no_inverse| will be set to one; otherwise it will be set to
773  * zero. */
774 int BN_mod_inverse_odd(BIGNUM *out, int *out_no_inverse, const BIGNUM *a,
775  const BIGNUM *n, BN_CTX *ctx);
776 
777 /* BN_kronecker returns the Kronecker symbol of |a| and |b| (which is -1, 0 or
778  * 1), or -2 on error. */
779 OPENSSL_EXPORT int BN_kronecker(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
780 
781 
782 /* Montgomery arithmetic. */
783 
784 /* BN_MONT_CTX contains the precomputed values needed to work in a specific
785  * Montgomery domain. */
786 
787 /* BN_MONT_CTX_new returns a fresh BN_MONT_CTX or NULL on allocation failure. */
789 
790 /* BN_MONT_CTX_free frees memory associated with |mont|. */
792 
793 /* BN_MONT_CTX_copy sets |to| equal to |from|. It returns |to| on success or
794  * NULL on error. */
796  const BN_MONT_CTX *from);
797 
798 /* BN_MONT_CTX_set sets up a Montgomery context given the modulus, |mod|. It
799  * returns one on success and zero on error. */
800 OPENSSL_EXPORT int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod,
801  BN_CTX *ctx);
802 
803 /* BN_MONT_CTX_set_locked takes |lock| and checks whether |*pmont| is NULL. If
804  * so, it creates a new |BN_MONT_CTX| and sets the modulus for it to |mod|. It
805  * then stores it as |*pmont|. It returns one on success and zero on error.
806  *
807  * If |*pmont| is already non-NULL then it does nothing and returns one. */
809  const BIGNUM *mod, BN_CTX *bn_ctx);
810 
811 /* BN_to_montgomery sets |ret| equal to |a| in the Montgomery domain. |a| is
812  * assumed to be in the range [0, n), where |n| is the Montgomery modulus. It
813  * returns one on success or zero on error. */
815  const BN_MONT_CTX *mont, BN_CTX *ctx);
816 
817 /* BN_from_montgomery sets |ret| equal to |a| * R^-1, i.e. translates values out
818  * of the Montgomery domain. |a| is assumed to be in the range [0, n), where |n|
819  * is the Montgomery modulus. It returns one on success or zero on error. */
821  const BN_MONT_CTX *mont, BN_CTX *ctx);
822 
823 /* BN_mod_mul_montgomery set |r| equal to |a| * |b|, in the Montgomery domain.
824  * Both |a| and |b| must already be in the Montgomery domain (by
825  * |BN_to_montgomery|). In particular, |a| and |b| are assumed to be in the
826  * range [0, n), where |n| is the Montgomery modulus. It returns one on success
827  * or zero on error. */
829  const BIGNUM *b,
830  const BN_MONT_CTX *mont, BN_CTX *ctx);
831 
832 
833 /* Exponentiation. */
834 
835 /* BN_exp sets |r| equal to |a|^{|p|}. It does so with a square-and-multiply
836  * algorithm that leaks side-channel information. It returns one on success or
837  * zero otherwise. */
838 OPENSSL_EXPORT int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
839  BN_CTX *ctx);
840 
841 /* BN_mod_exp sets |r| equal to |a|^{|p|} mod |m|. It does so with the best
842  * algorithm for the values provided and can run in constant time if
843  * |BN_FLG_CONSTTIME| is set for |p|. It returns one on success or zero
844  * otherwise. */
845 OPENSSL_EXPORT int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
846  const BIGNUM *m, BN_CTX *ctx);
847 
848 OPENSSL_EXPORT int BN_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
849  const BIGNUM *m, BN_CTX *ctx,
850  const BN_MONT_CTX *mont);
851 
853  const BIGNUM *p, const BIGNUM *m,
854  BN_CTX *ctx,
855  const BN_MONT_CTX *mont);
856 
857 
858 /* Deprecated functions */
859 
860 /* BN_bn2mpi serialises the value of |in| to |out|, using a format that consists
861  * of the number's length in bytes represented as a 4-byte big-endian number,
862  * and the number itself in big-endian format, where the most significant bit
863  * signals a negative number. (The representation of numbers with the MSB set is
864  * prefixed with null byte). |out| must have sufficient space available; to
865  * find the needed amount of space, call the function with |out| set to NULL. */
866 OPENSSL_EXPORT size_t BN_bn2mpi(const BIGNUM *in, uint8_t *out);
867 
868 /* BN_mpi2bn parses |len| bytes from |in| and returns the resulting value. The
869  * bytes at |in| are expected to be in the format emitted by |BN_bn2mpi|.
870  *
871  * If |out| is NULL then a fresh |BIGNUM| is allocated and returned, otherwise
872  * |out| is reused and returned. On error, NULL is returned and the error queue
873  * is updated. */
874 OPENSSL_EXPORT BIGNUM *BN_mpi2bn(const uint8_t *in, size_t len, BIGNUM *out);
875 
876 /* BN_mod_exp_mont_word is like |BN_mod_exp_mont| except that the base |a| is
877  * given as a |BN_ULONG| instead of a |BIGNUM *|. It returns one on success
878  * or zero otherwise. */
879 OPENSSL_EXPORT int BN_mod_exp_mont_word(BIGNUM *r, BN_ULONG a, const BIGNUM *p,
880  const BIGNUM *m, BN_CTX *ctx,
881  const BN_MONT_CTX *mont);
882 
883 /* BN_mod_exp2_mont calculates (a1^p1) * (a2^p2) mod m. It returns 1 on success
884  * or zero otherwise. */
886  const BIGNUM *p1, const BIGNUM *a2,
887  const BIGNUM *p2, const BIGNUM *m,
888  BN_CTX *ctx, const BN_MONT_CTX *mont);
889 
890 
891 /* Private functions */
892 
893 struct bignum_st {
894  BN_ULONG *d; /* Pointer to an array of 'BN_BITS2' bit chunks in little-endian
895  order. */
896  int top; /* Index of last used element in |d|, plus one. */
897  int dmax; /* Size of |d|, in words. */
898  int neg; /* one if the number is negative */
899  int flags; /* bitmask of BN_FLG_* values */
900 };
901 
903  BIGNUM RR; /* used to convert to montgomery form */
904  BIGNUM N; /* The modulus */
905  BN_ULONG n0[2]; /* least significant words of (R*Ri-1)/N */
906 };
907 
908 OPENSSL_EXPORT unsigned BN_num_bits_word(BN_ULONG l);
909 
910 #define BN_FLG_MALLOCED 0x01
911 #define BN_FLG_STATIC_DATA 0x02
912 /* avoid leaking exponent information through timing, BN_mod_exp_mont() will
913  * call BN_mod_exp_mont_consttime, BN_div() will call BN_div_no_branch,
914  * BN_mod_inverse() will call BN_mod_inverse_no_branch. */
915 #define BN_FLG_CONSTTIME 0x04
916 
917 
918 #if defined(__cplusplus)
919 } /* extern C */
920 
921 extern "C++" {
922 
923 namespace bssl {
924 
925 BORINGSSL_MAKE_DELETER(BIGNUM, BN_free)
926 BORINGSSL_MAKE_DELETER(BN_CTX, BN_CTX_free)
927 BORINGSSL_MAKE_DELETER(BN_MONT_CTX, BN_MONT_CTX_free)
928 
929 } // namespace bssl
930 
931 } /* extern C++ */
932 
933 #endif
934 
935 #define BN_R_ARG2_LT_ARG3 100
936 #define BN_R_BAD_RECIPROCAL 101
937 #define BN_R_BIGNUM_TOO_LONG 102
938 #define BN_R_BITS_TOO_SMALL 103
939 #define BN_R_CALLED_WITH_EVEN_MODULUS 104
940 #define BN_R_DIV_BY_ZERO 105
941 #define BN_R_EXPAND_ON_STATIC_BIGNUM_DATA 106
942 #define BN_R_INPUT_NOT_REDUCED 107
943 #define BN_R_INVALID_RANGE 108
944 #define BN_R_NEGATIVE_NUMBER 109
945 #define BN_R_NOT_A_SQUARE 110
946 #define BN_R_NOT_INITIALIZED 111
947 #define BN_R_NO_INVERSE 112
948 #define BN_R_PRIVATE_KEY_TOO_LARGE 113
949 #define BN_R_P_IS_NOT_PRIME 114
950 #define BN_R_TOO_MANY_ITERATIONS 115
951 #define BN_R_TOO_MANY_TEMPORARY_VARIABLES 116
952 #define BN_R_BAD_ENCODING 117
953 #define BN_R_ENCODE_ERROR 118
954 
955 #endif /* OPENSSL_HEADER_BN_H */
int BN_mod_inverse_odd(BIGNUM *out, int *out_no_inverse, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
Definition: gcd.c:232
OPENSSL_EXPORT int BN_mask_bits(BIGNUM *a, int n)
Definition: shift.c:278
OPENSSL_EXPORT int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
Definition: add.c:204
OPENSSL_EXPORT ASN1_BIT_STRING * bits
Definition: x509v3.h:532
OPENSSL_EXPORT int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb)
Definition: prime.c:355
OPENSSL_EXPORT unsigned BN_num_bits_word(BN_ULONG l)
Definition: bn.c:183
std::mutex lock
Definition: ParkingLot.cpp:180
OPENSSL_EXPORT int BN_parse_asn1_unsigned(CBS *cbs, BIGNUM *ret)
Definition: bn_asn1.c:21
OPENSSL_EXPORT int BN_set_word(BIGNUM *bn, BN_ULONG value)
Definition: bn.c:253
unsigned long long uint64_t
Definition: ptypes.h:120
OPENSSL_EXPORT void BN_CTX_start(BN_CTX *ctx)
Definition: ctx.c:150
OPENSSL_EXPORT int BN_pseudo_rand_range(BIGNUM *rnd, const BIGNUM *range)
Definition: random.c:257
OPENSSL_EXPORT BIGNUM * BN_dup(const BIGNUM *src)
Definition: bn.c:123
DOMString p
Definition: WebCryptoAPI.idl:116
OPENSSL_EXPORT int BN_hex2bn(BIGNUM **outp, const char *in)
Definition: convert.c:365
OPENSSL_EXPORT int BN_asc2bn(BIGNUM **outp, const char *in)
Definition: convert.c:439
OPENSSL_EXPORT int BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
Definition: add.c:104
void * arg
Definition: bn.h:656
OPENSSL_EXPORT void BN_CTX_end(BN_CTX *ctx)
Definition: ctx.c:182
OPENSSL_EXPORT pem_password_cb * cb
Definition: pem.h:398
OPENSSL_EXPORT BIGNUM * BN_new(void)
Definition: bn.c:68
OPENSSL_EXPORT int BN_is_prime_ex(const BIGNUM *candidate, int checks, BN_CTX *ctx, BN_GENCB *cb)
Definition: prime.c:470
OPENSSL_EXPORT int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx)
Definition: div.c:499
OPENSSL_EXPORT int BN_equal_consttime(const BIGNUM *a, const BIGNUM *b)
Definition: cmp.c:215
OPENSSL_EXPORT int BN_dec2bn(BIGNUM **outp, const char *in)
Definition: convert.c:435
OPENSSL_EXPORT int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_CTX *ctx)
Definition: div.c:427
OPENSSL_EXPORT int BN_lshift1(BIGNUM *r, const BIGNUM *a)
Definition: shift.c:104
OPENSSL_EXPORT int BN_kronecker(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
Definition: kronecker.c:62
uint8_t uint8_t CBS * cbs
Definition: internal.h:759
OPENSSL_EXPORT BIGNUM * BN_copy(BIGNUM *dest, const BIGNUM *src)
Definition: bn.c:143
OPENSSL_EXPORT int BN_marshal_asn1(CBB *cbb, const BIGNUM *bn)
Definition: bn_asn1.c:61
OPENSSL_EXPORT int BN_mod_exp_mont_word(BIGNUM *r, BN_ULONG a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, const BN_MONT_CTX *mont)
Definition: exponentiation.c:1200
dest
Definition: upload.py:394
OPENSSL_EXPORT char * BN_bn2dec(const BIGNUM *a)
Definition: convert.c:369
OPENSSL_EXPORT BN_CTX * BN_CTX_new(void)
Definition: ctx.c:124
OPENSSL_EXPORT BIGNUM * bn_wexpand(BIGNUM *bn, size_t words)
Definition: bn.c:315
OPENSSL_EXPORT int BN_is_bit_set(const BIGNUM *a, int n)
Definition: shift.c:263
const GLfloat * m
Definition: gl2ext.h:850
OPENSSL_EXPORT unsigned BN_num_bytes(const BIGNUM *bn)
Definition: bn.c:241
GLuint divisor
Definition: gl2ext.h:1105
OPENSSL_EXPORT int BN_bn2cbb_padded(CBB *out, size_t len, const BIGNUM *in)
Definition: convert.c:196
Definition: bn.h:902
OPENSSL_EXPORT int BN_sqrt(BIGNUM *out_sqrt, const BIGNUM *in, BN_CTX *ctx)
Definition: sqrt.c:431
OPENSSL_EXPORT BN_ULONG BN_get_word(const BIGNUM *bn)
Definition: convert.c:507
int FILE
Definition: antglob.py:49
OPENSSL_EXPORT int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m, BN_CTX *ctx)
Definition: div.c:508
OPENSSL_EXPORT int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx)
Definition: mul.c:800
Definition: bn.h:893
OPENSSL_EXPORT BN_MONT_CTX * BN_MONT_CTX_new(void)
Definition: montgomery.c:127
OPENSSL_EXPORT int BN_print(BIO *bio, const BIGNUM *a)
Definition: convert.c:462
OPENSSL_EXPORT size_t BN_bn2mpi(const BIGNUM *in, uint8_t *out)
Definition: convert.c:518
OPENSSL_EXPORT void BN_free(BIGNUM *bn)
Definition: bn.c:86
OPENSSL_EXPORT int BN_rand_range_ex(BIGNUM *r, BN_ULONG min_inclusive, const BIGNUM *max_exclusive)
Definition: random.c:195
int neg
Definition: bn.h:898
OPENSSL_EXPORT unsigned BN_num_bits(const BIGNUM *bn)
Definition: bn.c:231
OPENSSL_EXPORT void BN_with_flags(BIGNUM *out, const BIGNUM *in, int flags)
Definition: bn.c:175
OPENSSL_EXPORT int BN_mod_exp2_mont(BIGNUM *r, const BIGNUM *a1, const BIGNUM *p1, const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m, BN_CTX *ctx, const BN_MONT_CTX *mont)
Definition: exponentiation.c:1223
OPENSSL_EXPORT BN_ULONG BN_div_word(BIGNUM *numerator, BN_ULONG divisor)
Definition: div.c:596
GLint GLint bottom
Definition: gl2ext.h:3063
OPENSSL_EXPORT int BN_rand_range(BIGNUM *rnd, const BIGNUM *range)
Definition: random.c:253
OPENSSL_EXPORT BIGNUM * BN_mod_inverse(BIGNUM *out, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
Definition: gcd.c:400
OPENSSL_EXPORT int BN_get_flags(const BIGNUM *bn, int flags)
Definition: bn.c:373
Definition: RTCStatsReport.idl:42
EGLStreamKHR EGLint n
Definition: eglext.h:984
OPENSSL_EXPORT int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BN_MONT_CTX *mont, BN_CTX *ctx)
Definition: montgomery.c:363
int
Definition: runtests.py:53
OPENSSL_EXPORT void BN_clear_free(BIGNUM *bn)
Definition: bn.c:102
OPENSSL_EXPORT int BN_one(BIGNUM *bn)
Definition: bn.c:249
OPENSSL_EXPORT int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx)
Definition: div.c:577
OPENSSL_EXPORT int BN_rshift(BIGNUM *r, const BIGNUM *a, int n)
Definition: shift.c:135
int top
Definition: float-mm.c:109
OPENSSL_EXPORT const ASN1_OBJECT int const unsigned char int len
Definition: x509.h:1053
Definition: WebCryptoAPI.idl:29
int ret
Definition: test_unit_dft.c:69
Definition: bytestring.h:286
OPENSSL_EXPORT int BN_sub_word(BIGNUM *a, BN_ULONG w)
Definition: add.c:327
int BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, CRYPTO_MUTEX *lock, const BIGNUM *mod, BN_CTX *bn_ctx)
Definition: montgomery.c:222
int int * out
Definition: gcc-loops.cpp:206
#define OPENSSL_EXPORT
Definition: base.h:160
OPENSSL_EXPORT int BN_set_bit(BIGNUM *a, int n)
Definition: shift.c:221
EGLAttrib * value
Definition: eglext.h:120
OPENSSL_EXPORT char * BN_bn2hex(const BIGNUM *bn)
Definition: convert.c:203
EGLContext ctx
Definition: eglext.h:192
OPENSSL_EXPORT void BN_GENCB_set(BN_GENCB *callback, int(*f)(int event, int n, struct bn_gencb_st *), void *arg)
Definition: prime.c:340
unsigned char uint8_t
Definition: ptypes.h:89
OPENSSL_EXPORT int BN_is_zero(const BIGNUM *bn)
Definition: cmp.c:199
Definition: bytestring.h:37
OPENSSL_EXPORT int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx)
Definition: montgomery.c:170
OPENSSL_EXPORT int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m)
Definition: div.c:531
Definition: bio.h:810
OPENSSL_EXPORT BIGNUM * BN_bin2bn(const uint8_t *in, size_t len, BIGNUM *ret)
Definition: convert.c:72
OPENSSL_EXPORT BIGNUM * BN_CTX_get(BN_CTX *ctx)
Definition: ctx.c:161
OPENSSL_EXPORT int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
Definition: exponentiation.c:139
BN_ULONG * d
Definition: bn.h:894
OPENSSL_EXPORT void BN_clear(BIGNUM *bn)
Definition: bn.c:159
OPENSSL_EXPORT int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
Definition: add.c:67
OPENSSL_EXPORT BIGNUM * BN_mpi2bn(const uint8_t *in, size_t len, BIGNUM *out)
Definition: convert.c:558
OPENSSL_EXPORT void BN_set_flags(BIGNUM *bn, int flags)
Definition: bn.c:377
int(* callback)(int event, int n, struct bn_gencb_st *)
Definition: bn.h:657
BIGNUM N
Definition: bn.h:904
OPENSSL_EXPORT int BN_is_word(const BIGNUM *bn, BN_ULONG w)
Definition: cmp.c:207
OPENSSL_EXPORT int BN_lshift(BIGNUM *r, const BIGNUM *a, int n)
Definition: shift.c:66
OPENSSL_EXPORT int BN_parse_asn1_unsigned_buggy(CBS *cbs, BIGNUM *ret)
Definition: bn_asn1.c:45
OPENSSL_EXPORT void BN_zero(BIGNUM *bn)
Definition: bn.c:245
int flags
Definition: bn.h:899
GLboolean GLboolean GLboolean GLboolean a
Definition: gl2ext.h:306
OPENSSL_EXPORT int BN_set_u64(BIGNUM *bn, uint64_t value)
Definition: bn.c:269
OPENSSL_EXPORT int BN_bn2bin_padded(uint8_t *out, size_t len, const BIGNUM *in)
Definition: convert.c:162
OPENSSL_EXPORT int BN_GENCB_call(BN_GENCB *callback, int event, int n)
Definition: prime.c:347
GLfloat f
Definition: gl2.h:417
OPENSSL_EXPORT int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx)
Definition: exponentiation.c:577
OPENSSL_EXPORT int BN_is_prime_fasttest_ex(const BIGNUM *candidate, int checks, BN_CTX *ctx, int do_trial_division, BN_GENCB *cb)
Definition: prime.c:474
OPENSSL_EXPORT int BN_to_montgomery(BIGNUM *ret, const BIGNUM *a, const BN_MONT_CTX *mont, BN_CTX *ctx)
Definition: montgomery.c:254
OPENSSL_EXPORT void BN_set_negative(BIGNUM *bn, int sign)
Definition: bn.c:307
OPENSSL_EXPORT int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_CTX *ctx)
Definition: div.c:467
OPENSSL_EXPORT int BN_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, const BN_MONT_CTX *mont)
Definition: exponentiation.c:586
OPENSSL_EXPORT int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom)
Definition: random.c:191
int BN_mod_inverse_blinded(BIGNUM *out, int *out_no_inverse, const BIGNUM *a, const BN_MONT_CTX *mont, BN_CTX *ctx)
Definition: gcd.c:454
OPENSSL_EXPORT int BN_abs_is_word(const BIGNUM *bn, BN_ULONG w)
Definition: cmp.c:177
OPENSSL_EXPORT int BN_is_odd(const BIGNUM *bn)
Definition: cmp.c:211
GLenum src
Definition: gl2ext.h:304
OPENSSL_EXPORT int BN_cmp_word(const BIGNUM *a, BN_ULONG b)
Definition: cmp.c:188
OPENSSL_EXPORT int BN_from_montgomery(BIGNUM *ret, const BIGNUM *a, const BN_MONT_CTX *mont, BN_CTX *ctx)
Definition: montgomery.c:343
OPENSSL_EXPORT int BN_generate_dsa_nonce(BIGNUM *out, const BIGNUM *range, const BIGNUM *priv, const uint8_t *message, size_t message_len, BN_CTX *ctx)
Definition: random.c:261
OPENSSL_EXPORT size_t BN_bn2bin(const BIGNUM *in, uint8_t *out)
Definition: convert.c:121
OPENSSL_EXPORT BN_MONT_CTX * BN_MONT_CTX_copy(BN_MONT_CTX *to, const BN_MONT_CTX *from)
Definition: montgomery.c:151
Definition: bn.h:655
OPENSSL_EXPORT int BN_print_fp(FILE *fp, const BIGNUM *a)
Definition: convert.c:492
Definition: bytestring_test.cc:31
std::vector< string > words
Definition: repeated_field_unittest.cc:1386
OPENSSL_EXPORT int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
Definition: add.c:261
OPENSSL_EXPORT int BN_rshift1(BIGNUM *r, const BIGNUM *a)
Definition: shift.c:188
OPENSSL_EXPORT int BN_is_negative(const BIGNUM *bn)
Definition: bn.c:303
OPENSSL_EXPORT int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
Definition: mul.c:562
GLboolean GLboolean GLboolean b
Definition: gl2ext.h:306
OPENSSL_EXPORT const BIGNUM * BN_value_one(void)
Definition: bn.c:168
int dmax
Definition: bn.h:897
OPENSSL_EXPORT int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m)
Definition: div.c:435
OPENSSL_EXPORT int BN_primality_test(int *is_probably_prime, const BIGNUM *candidate, int checks, BN_CTX *ctx, int do_trial_division, BN_GENCB *cb)
Definition: prime.c:454
Definition: ctx.c:111
OPENSSL_EXPORT int BN_add_word(BIGNUM *a, BN_ULONG w)
Definition: add.c:162
BIGNUM RR
Definition: bn.h:903
OPENSSL_EXPORT int BN_gcd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
Definition: gcd.c:186
Definition: thread.h:88
OPENSSL_EXPORT int BN_is_one(const BIGNUM *bn)
Definition: cmp.c:203
OPENSSL_EXPORT int BN_div(BIGNUM *quotient, BIGNUM *rem, const BIGNUM *numerator, const BIGNUM *divisor, BN_CTX *ctx)
Definition: div.c:186
OPENSSL_EXPORT int BN_rand(BIGNUM *rnd, int bits, int top, int bottom)
Definition: random.c:118
OPENSSL_EXPORT void BN_init(BIGNUM *bn)
Definition: bn.c:82
GLuint GLsizei const GLchar * message
Definition: gl2ext.h:137
OPENSSL_EXPORT BIGNUM * BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
Definition: sqrt.c:60
Definition: bwe_rtp.cc:26
OPENSSL_EXPORT int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_CTX *ctx)
Definition: div.c:446
GLfloat GLfloat GLfloat GLfloat w
Definition: gl2.h:519
OPENSSL_EXPORT int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, const BN_MONT_CTX *mont)
Definition: exponentiation.c:867
OPENSSL_EXPORT void BN_CTX_free(BN_CTX *ctx)
Definition: ctx.c:140
OPENSSL_EXPORT int BN_ucmp(const BIGNUM *a, const BIGNUM *b)
Definition: cmp.c:64
int top
Definition: bn.h:896
OPENSSL_EXPORT int BN_mul_word(BIGNUM *bn, BN_ULONG w)
Definition: mul.c:776
OPENSSL_EXPORT int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m)
Definition: div.c:456
GLboolean r
Definition: gl2ext.h:306
OPENSSL_EXPORT void bn_correct_top(BIGNUM *bn)
Definition: bn.c:355
GLenum GLint * range
Definition: gl2.h:450
OPENSSL_EXPORT BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w)
Definition: div.c:635
OPENSSL_EXPORT int BN_clear_bit(BIGNUM *a, int n)
Definition: shift.c:245
OPENSSL_EXPORT int BN_cmp(const BIGNUM *a, const BIGNUM *b)
Definition: cmp.c:86
OPENSSL_EXPORT int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m)
Definition: div.c:585
OPENSSL_EXPORT int BN_nnmod(BIGNUM *rem, const BIGNUM *numerator, const BIGNUM *divisor, BN_CTX *ctx)
Definition: div.c:415
OPENSSL_EXPORT void BN_MONT_CTX_free(BN_MONT_CTX *mont)
Definition: montgomery.c:141